流失预测 使用人工神经网络的客户流失预测 问题陈述 任务是预测某个客户是否会放弃公司。 也就是说,要预测“客户流失”属性。 通常,为每个客户国家/地区提供的信息帐户长度区号电话国际计划VMail计划VMail消息日间日间通话日间收费夏娃·明斯平安夜电话夏娃冲锋夜分钟夜间通话夜间收费国际分钟国际通话国际收费客户服务电话搅拌? 内容 数据探索 数据预处理 训练模式 可视化模型
1
对于公司来说,要想实现持续发展,准确预测客户流失至关重要。 先前的研究已经使用许多机器学习方法来预测客户流失。 通用模型无法充分利用时间序列功能。 为了克服这个缺点,我们提出了一个基于LSTM和CNN的模型,该模型在LSTM层和卷积层之间具有跨层连接。 该模型可以同时学习潜在的顺序信息,并从时间序列特征中捕获重要的局部特征。 此外,我们介绍了一种通过在现有特征上训练XGBoost模型来构造新特征的方法。 在真实数据集上的实验结果表明,我们提出的模型比其他比较模型具有更好的性能。
2021-12-03 14:46:35 674KB Churn prediction Time series
1
Churn-Prediction-of-Bank-Customers:预测银行客户流失
2021-11-20 14:23:13 286KB JupyterNotebook
1
银行客户流失预测 该存储库包含与银行客户流失预测项目相关的文件。
2021-06-29 14:18:26 317.57MB JupyterNotebook
1