房屋价格预测 艾姆斯住房数据集摘自kaggle竞赛。 该项目的目的是预测Boston Housing Dataset中房屋的房价。 提供了两个文件,即训练和测试,并且要估计测试数据的价格。 在这里,我已使用XGBoost进行预测。 感谢Krish Naik制作了这些精彩的视频,以帮助他们理解和实施房价预测。 稍后,我将添加探索性数据分析,并将XGBoost模型的结果与其他回归技术进行比较。 房价预测步骤 加载数据中 数据探索2.1具有空值的特征2.2数值特征 2.2.1 Year Features 2.2.2 Discrete Features 2.2.3 Continous Features 2.3分类特征 数据清理 数据转换4.1稀有分类特征处理 基本模型性能(XGBoost) 超参数调整 最终模型 可视化结果 1.加载数据 df = pd . read_csv
1
xgboost在windows下的详细安装过程:http://blog.csdn.net/bo553649508/article/details/50586653,并附带xgboost的参数说明
2021-12-24 09:47:29 1.91MB python xgboost 参数tutorial
1
Auto_TS:Auto_TimeSeries 使用单行代码自动构建多个时间序列模型。 现在已用Dask更新。 Auto_timeseries是用于时间序列数据的复杂模型构建实用程序。 由于它可以自动执行复杂任务中的许多任务,因此它假定了许多智能默认值。 但是您可以更改它们。 Auto_Timeseries将基于Statsmodels ARIMA,Seasonal ARIMA和Scikit-Learn ML快速建立预测模型。 它将自动选择给出最佳分数的最佳模型。 从0.0.35版开始,新版本进行了重大更新:现在,您可以将文件加载到Dask数据框中。 只需提供文件名,如果文件名太大而无法容纳在pandas数据框中,则Auto_TS会自动检测到该文件并将其加载到Dask数据框中。 此外,自0.0.25版以来的新功能是Auto_TimeSerie的语法:现在,它更像scikit-lear
2021-12-23 23:57:09 1.46MB python time-series sklearn python3
1
陈天奇大神的XGBoost的PPT,帮助理解xgb,有想了解机器XGBoost的可以下载
2021-12-23 15:26:49 2.91MB XGBoost 机器学习
1
针对传统机器学习算法处理海量风机数据采集与监视控制(SCADA)监测数据效率低和准确度差的问题,提出利用极端梯度提升(XGBoost)算法预测风机主轴承故障。首先,对风机主轴承SCADA数据开展特征分析,挖掘和发现特征与故障之间的关联关系,并评估各特征的重要性;然后利用XGBoost算法构建主轴承故障预测模型,进行模型评估;最后,依据SCADA系统收集的实测数据对模型进行训练和测试,并调整XGBoost模型的主要参数,提高预测准确率。通过与经典梯度提升决策树(GBDT)算法诊断结果相对比,结果表明XGBoost在风机主轴承故障预测的效率和准确度方面均优于GBDT算法,是处理SCADA大规模数据集的有效工具。
1
离线安装包,测试可用。使用 pip install [完整包名] 进行安装
2021-12-21 17:02:05 1.87MB python
医疗保健分析 存储库内容: Python Notebook文件包含用于数据探索,功能工程和机器学习模型(朴素贝叶斯,XGBoost,神经网络)的项目代码。 PDF报告文件包含项目,谓词和结果的概述。 Datasets.zip包含项目中使用的测试和训练数据。 HTML文件是jupyter笔记本的降价促销,其中所有输出均无需使用python或其IDE即可查看。 介绍: 医疗机构承受着越来越大的压力,以改善患者的护理效果并获得更好的护理。 尽管这种情况是一个挑战,但它也为组织提供了一个机会,可以利用其数据中的更多价值和洞察力来显着提高护理质量。 医疗保健分析是指使用定量和定性技术对数据进行分析,以探索所获取数据中的趋势和模式。 尽管医疗保健管理使用各种指标来衡量绩效,但患者的住院时间很重要。 能够预测住院时间(LOS),使医院能够优化其治疗计划以减少LOS,从而降低患者,工作人员和
1
driving-behavior-risk-prediction. 2018平安产险数据建模大赛 驾驶行为预测驾驶风险 Fork或借鉴请注明出处  . Thx 比赛链接 RANK 第五周 第六周 相关文章 License Copyright (c) . All rights reserved. Licensed under the License.
2021-12-19 13:25:04 4.81MB competition python3 xgboost predictive-modeling
1
大量博客总结XGBoost
2021-12-17 16:08:32 3.1MB XGBoost
1
EDA和ML项目 存储库包含各种项目,这些项目都使用R语言编写了以下代码: 探索性数据分析 机器学习模型(线性回归,逻辑回归,k均值聚类,分层聚类,SVM,决策树,随机森林,时间序列分析,XGBoost) 以下是一些常用的程序包/库的列表,这些程序包/库被用作数据分析和构建机器学习模型的一部分 数据处理: dplyr,plyr,tidyr,stringer,data.table,lubridate(用于日期处理), 数据可视化: ggplot2,cowplot,ggthemes,比例 ML模型: randomForest,caret(用于数据拆分,交叉验证,预处理,特征选择,变量重要性估计等) 推荐模型: re荐 文本挖掘: tm,tidyverse
2021-12-17 12:54:13 26.84MB r random-forest clustering linear-regression
1