针对传统机器学习算法处理海量风机数据采集与监视控制(SCADA)监测数据效率低和准确度差的问题,提出利用极端梯度提升(XGBoost)算法预测风机主轴承故障。首先,对风机主轴承SCADA数据开展特征分析,挖掘和发现特征与故障之间的关联关系,并评估各特征的重要性;然后利用XGBoost算法构建主轴承故障预测模型,进行模型评估;最后,依据SCADA系统收集的实测数据对模型进行训练和测试,并调整XGBoost模型的主要参数,提高预测准确率。通过与经典梯度提升决策树(GBDT)算法诊断结果相对比,结果表明XGBoost在风机主轴承故障预测的效率和准确度方面均优于GBDT算法,是处理SCADA大规模数据集的有效工具。
1