墨西哥帽子matlab代码神经网络算法 用MATLAB编写的神经网络算法 hebbian.m 该代码采用输入向量,权重,学习常数,并在每个阶段绘制更新后的权重 净额 代码将两个矩阵相乘 BAM_network.m 这个Matlab代码在以5x3的矩阵制作时为英语alphabects训练了双向联想存储网络的权重。 max_net.m 基于竞争的神经网络的具体示例。 可以用作子网来选择输入量最大的节点。 max_hat.m 该matlab代码采用以下参数输入n个输入神经元:->互连区域的半径->具有正互连的区域的半径->恒定c1->恒定c2->外部信号。 该代码对这些输入神经元执行墨西哥帽算法,并执行所需的次数。 hamming_net.m 这些网络可用于查找最接近双极性输入向量x的示例。 索姆 此代码已演示了Kohonen自组织图,也称为拓扑保留图算法。 lvq.m 该代码显示了线性向量量化算法的工作原理。 目前,代码将2类分类。 将对代码进行进一步的改进。 感知器 该代码显示了用于逻辑门的感知器学习算法的实现。 在最初阶段,已实现了“与门”,其输入值和目标输出可在代码中轻松修改。 它采
2023-11-26 17:31:59 7KB 系统开源
1
LazyProgrammer, "Convolutional Neural Networks in Python: Master Data Science and Machine Learning with Modern Deep Learning in Python, Theano, and TensorFlow" 2016 | ASIN: B01FQDREOK | 52 pages | EPUB | 1 MB This is the 3rd part in my Data Science and Machine Learning series on Deep Learning in Python. At this point, you already know a lot about neural networks and deep learning, including not just the basics like backpropagation, but how to improve it using modern techniques like momentum and adaptive learning rates. You've already written deep neural networks in Theano and TensorFlow, and you know how to run code using the GPU. This book is all about how to use deep learning for computer vision using convolutional neural networks. These are the state of the art when it comes to image classification and they beat vanilla deep networks at tasks like MNIST. In this course we are going to up the ante and look at the StreetView House Number (SVHN) dataset - which uses larger color images at various angles - so things are going to get tougher both computationally and in terms of the difficulty of the classification task. But we will show that convolutional neural networks, or CNNs, are capable of handling the challenge! Because convolution is such a central part of this type of neural network, we are going to go in-depth on this topic. It has more applications than you might imagine, such as modeling artificial organs like the pancreas and the heart. I'm going to show you how to build convolutional filters that can be applied to audio, like the echo effect, and I'm going to show you how to build filters for image effects, like the Gaussian blur and edge detection. After describing the architecture of a convolutional neural network, we will jump straight into code, and I will show you how to extend the deep neural networks we built last time with just a few new functions to turn them into CNNs. We will then test their performance and show how convolutional neural networks written in both Theano and TensorFlow can outperform the accuracy of a plain neural network on the StreetView House Number dataset.
2023-10-26 06:03:37 1.21MB Python Neural Network
1
总共1000多页,很好的资料,着重讲DL4J。
2023-10-24 12:53:43 11.53MB Java Deep Learning
1
For graduate-level neural network courses offered in the departments of Computer Engineering, Electrical Engineering, and Computer Science. Renowned for its thoroughness and readability, this well-organized and completely up-to-date text remains the most comprehensive treatment of neural networks from an engineering perspective. Refocused, revised and renamed to reflect the duality of neural networks and learning machines, this edition recognizes that the subject matter is richer when these topics are studied together. Ideas drawn from neural networks and machine learning are hybridized to perform improved learning tasks beyond the capability of either independently.
2023-10-07 23:06:25 13.71MB 机器学习 神经网络 深度学习
1
用于文档图像变形的门控和分叉堆叠式U-Net模块 捕获文档图像是记录它们的最简单,最常用的方法之一。 但是,这些图像是在手持设备的帮助下捕获的,通常会导致难以消除的不良失真。 我们提出了一个监督的门控和分叉堆叠式U-Net模块,以预测变形网格并从输入中创建无失真的图像。 在对网络进行人工合成的文档图像训练时,将根据真实世界的图像来计算结果。 我们方法的新颖性不仅存在于U-Net的分叉中,以帮助消除网格坐标的混合,而且还存在于使用门控网络的情况下,该门控网络为模型增加了边界和其他分钟线级别的细节。 我们提出的端到端流水线仅在先前方法中使用的数据的8%进行训练后,就可以在DocUNet数据集上实现最新的性能。 要求 所需的软件包: 火炬(> 1.4.0) 火炬视觉(> 0.6.0) numpy(> 1.18.4) 要安装所有必需的软件包,请使用pip install -r requir
1
利用Neural Renderer神经网络渲染器实现3D模型渲染
2023-07-06 09:23:23 1.3MB 人工智能
1
文件包里包含关于SNN最新技术的相关文档
2023-06-09 11:20:42 5.16MB SNN FPGA
1
图像去模糊 一张照片捕捉到一个难忘的时刻却后来才发现它模糊不清,这真是令人失望。 图像去模糊也可以用作其他应用程序的预处理步骤。 该项目使您可以对图像进行模糊处理。 用法 预先训练的权重和使用的模型存储在存储库中。 您可以直接加载它们并运行Demo.ipynb中显示的去模糊处理 如果要从头训练模型,则训练脚本位于deblur.py中 模型 使用了具有3个卷积层的CNN模型。 训练集包括4000张大小为96x96的模糊图像,目标集由相应的清晰图像组成。 实际的去模糊是在尺寸为32x32的较小色块上学习的。 在预测期间,可以一次从32x32的色块中预测出清晰的色块。 样品 水果: 伦娜:
1
基于AI的地震信号检测器和鉴相器 描述 EQTransformer是基于AI的地震信号检测器和相位(P&S)拾取器,基于带有注意机制的深度神经网络。 它具有专门为地震信号设计的分层体系结构。 EQTransformer已经接受了全球地震数据的培训,可以同时高效地执行检测和到达时间的选择。 除了预测概率,它还可以提供估计的模型不确定性。 EQTransformer python 3软件包包括用于下载连续地震数据,进行预处理,执行地震信号检测以及使用预先训练的模型进行相位(P&S)拾取,构建和测试新模型以及执行简单的相位关联的模块。 开发人员:S. Mostafa Mousavi 链接 说明文件: : 论文: https : //rdcu.be/b58li 参考 Mousavi,SM,Ellsworth,WL,Zhu,W.,Chuang,L,Y。和Beroza,G,C。 Nat C
2023-05-04 10:43:53 31.34MB deep-learning neural-network detection earthquakes
1
敏锐模型动物园 Acuity模型动物园包含一组由Acuity工具包创建或转换的流行神经网络模型(来自Caffe,Tensorflow,PyTorch,TFLite,DarkNet或ONNX)。 模型查看器 Acuity使用JSON格式描述神经网络模型,并且我们提供了一个来帮助可视化数据流图。 从4.6.8开始,模型查看器是一部分。 分类 ( ) ( ) ( ) ( ) ( ) ( OriginModel ) Mobilenet-v2 ( OriginModel ) Mobilenet-v3 ( OriginModel ) EfficientNet ( OriginModel ) EfficientNet(EdgeTPU) ( OriginModel ) Nasnet-Large ( OriginModel ) Nasnet-Mobile ( Or
2023-05-03 14:32:56 1.64MB caffe deep-learning neural-network model-zoo
1