CompressAI:用于端到端压缩研究的PyTorch库和评估平台

上传者: 42127835 | 上传时间: 2025-04-08 15:13:06 | 文件大小: 7.29MB | 文件类型: ZIP
压缩AI CompressAI( compress-ay )是用于端到端压缩研究的PyTorch库和评估平台。 CompressAI当前提供: 用于基于深度学习的数据压缩的自定义操作,层和模型 官方库的部分端口 预训练的端到端压缩模型,用于学习图像压缩 评估脚本,将学习的模型与经典图像/视频压缩编解码器进行比较 注意:多GPU支持目前处于试验阶段。 安装 CompressAI仅支持python 3.6+(当前对PyTorch的支持<3.9)和PyTorch 1.4+。还需要C ++ 17编译器,最新版本的pip(19.0+)和常见的python软件包(有关完整列表,请参见setup.py )。 要开始并安装CompressAI,请在运行以下命令: git clone https://github.com/InterDigitalInc/CompressAI compressai cd

文件下载

资源详情

[{"title":"( 159 个子文件 7.29MB ) CompressAI:用于端到端压缩研究的PyTorch库和评估平台","children":[{"title":"make.bat <span style='color:#111;'> 795B </span>","children":null,"spread":false},{"title":".clang-format <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"rans_interface.cpp <span style='color:#111;'> 11.06KB </span>","children":null,"spread":false},{"title":"ops.cpp <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"Dockerfile.cpu <span style='color:#111;'> 714B </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 611B </span>","children":null,"spread":false},{"title":".git-blame-ignore-revs <span style='color:#111;'> 71B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 7B </span>","children":null,"spread":false},{"title":"rans_byte.h <span style='color:#111;'> 11.01KB </span>","children":null,"spread":false},{"title":"rans64.h <span style='color:#111;'> 10.22KB </span>","children":null,"spread":false},{"title":"rans_word_sse41.h <span style='color:#111;'> 7.54KB </span>","children":null,"spread":false},{"title":"rans_interface.hpp <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"MANIFEST.in <span style='color:#111;'> 116B </span>","children":null,"spread":false},{"title":"CompressAI Inference Demo.ipynb <span style='color:#111;'> 5.07MB </span>","children":null,"spread":false},{"title":"CompressAI Models Comparison Demo.ipynb <span style='color:#111;'> 1.50MB </span>","children":null,"spread":false},{"title":"jpeg.json <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"webp.json <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"jpeg.json <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"jpeg2000.json <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"webp.json <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"jpeg2000.json <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"webp.json <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"jpeg2000.json <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"jpeg.json <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"av1.json <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"av1.json <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"av1.json <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"bpg_444_x265_ycbcr.json <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"bpg_444_x265_ycbcr.json <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"bpg_444_x265_ycbcr.json <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"vtm.json <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"hm.json <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"vtm.json <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"hm.json <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"vtm.json <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"hm.json <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"compressai-bmshj2018-hyperprior-ms-ssim.json <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"compressai-bmshj2018-factorized-ms-ssim.json <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"compressai-bmshj2018-hyperprior-ms-ssim.json <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"compressai-bmshj2018-hyperprior.json <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"compressai-bmshj2018-factorized-ms-ssim.json <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"compressai-bmshj2018-factorized-ms-ssim.json <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"compressai-bmshj2018-hyperprior.json <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"compressai-bmshj2018-hyperprior-ms-ssim.json <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"compressai-bmshj2018-factorized.json <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"compressai-bmshj2018-factorized.json <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"compressai-bmshj2018-factorized.json <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"compressai-bmshj2018-hyperprior.json <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"compressai-mbt2018-mean.json <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"compressai-mbt2018-mean.json <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"compressai-mbt2018.json <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"compressai-mbt2018.json <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"compressai-mbt2018-mean.json <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"compressai-mbt2018.json <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"compressai-cheng2020-anchor-mse.json <span style='color:#111;'> 979B </span>","children":null,"spread":false},{"title":"compressai-cheng2020-anchor-mse.json <span style='color:#111;'> 977B </span>","children":null,"spread":false},{"title":"compressai-cheng2020-anchor.json <span style='color:#111;'> 977B </span>","children":null,"spread":false},{"title":"paper-mbt2018-mean.json <span style='color:#111;'> 469B </span>","children":null,"spread":false},{"title":"paper-mbt2018.json <span style='color:#111;'> 432B </span>","children":null,"spread":false},{"title":"paper-bmshj2018-hyperprior.json <span style='color:#111;'> 411B </span>","children":null,"spread":false},{"title":"paper-bmshj2018-factorized.json <span style='color:#111;'> 411B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 260B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 985B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 690B </span>","children":null,"spread":false},{"title":"Readme.md <span style='color:#111;'> 5.03KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 975B </span>","children":null,"spread":false},{"title":"Readme.md <span style='color:#111;'> 380B </span>","children":null,"spread":false},{"title":"NEWS.md <span style='color:#111;'> 244B </span>","children":null,"spread":false},{"title":"Readme.md <span style='color:#111;'> 135B </span>","children":null,"spread":false},{"title":"stmalo_fracape.png <span style='color:#111;'> 775.45KB </span>","children":null,"spread":false},{"title":"kodak-psnr.png <span style='color:#111;'> 273.09KB </span>","children":null,"spread":false},{"title":"compressai.png <span style='color:#111;'> 264.93KB </span>","children":null,"spread":false},{"title":"compressai-clic2020-mobile.png <span style='color:#111;'> 237.99KB </span>","children":null,"spread":false},{"title":"compressai-clic2020-pro.png <span style='color:#111;'> 222.67KB </span>","children":null,"spread":false},{"title":"bmshj2018-hyperprior-mse.png <span style='color:#111;'> 163.00KB </span>","children":null,"spread":false},{"title":"bmshj2018-factorized-mse.png <span style='color:#111;'> 162.00KB </span>","children":null,"spread":false},{"title":"mbt2018-mean-mse.png <span style='color:#111;'> 150.58KB </span>","children":null,"spread":false},{"title":"mbt2018-mse.png <span style='color:#111;'> 149.80KB </span>","children":null,"spread":false},{"title":"ID-compressAI-logo-750x140.png <span style='color:#111;'> 8.23KB </span>","children":null,"spread":false},{"title":"logo.png <span style='color:#111;'> 5.52KB </span>","children":null,"spread":false},{"title":"logo.png <span style='color:#111;'> 5.52KB </span>","children":null,"spread":false},{"title":"codecs.py <span style='color:#111;'> 23.31KB </span>","children":null,"spread":false},{"title":"priors.py <span style='color:#111;'> 21.75KB </span>","children":null,"spread":false},{"title":"entropy_models.py <span style='color:#111;'> 20.60KB </span>","children":null,"spread":false},{"title":"image.py <span style='color:#111;'> 13.13KB </span>","children":null,"spread":false},{"title":"test_entropy_models.py <span style='color:#111;'> 10.35KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 10.26KB </span>","children":null,"spread":false},{"title":"test_zoo.py <span style='color:#111;'> 8.33KB </span>","children":null,"spread":false},{"title":"codec.py <span style='color:#111;'> 8.19KB </span>","children":null,"spread":false},{"title":"__main__.py <span style='color:#111;'> 7.98KB </span>","children":null,"spread":false},{"title":"test_models.py <span style='color:#111;'> 7.45KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 6.27KB </span>","children":null,"spread":false},{"title":"__main__.py <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"test_layers.py <span style='color:#111;'> 4.95KB </span>","children":null,"spread":false},{"title":"waseda.py <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"__main__.py <span style='color:#111;'> 3.90KB </span>","children":null,"spread":false},{"title":"functional.py <span style='color:#111;'> 3.86KB </span>","children":null,"spread":false},{"title":"__main__.py <span style='color:#111;'> 3.82KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明