用于文档图像变形的门控和分叉堆叠式U-Net模块 捕获文档图像是记录它们的最简单,最常用的方法之一。 但是,这些图像是在手持设备的帮助下捕获的,通常会导致难以消除的不良失真。 我们提出了一个监督的门控和分叉堆叠式U-Net模块,以预测变形网格并从输入中创建无失真的图像。 在对网络进行人工合成的文档图像训练时,将根据真实世界的图像来计算结果。 我们方法的新颖性不仅存在于U-Net的分叉中,以帮助消除网格坐标的混合,而且还存在于使用门控网络的情况下,该门控网络为模型增加了边界和其他分钟线级别的细节。 我们提出的端到端流水线仅在先前方法中使用的数据的8%进行训练后,就可以在DocUNet数据集上实现最新的性能。 要求 所需的软件包: 火炬(> 1.4.0) 火炬视觉(> 0.6.0) numpy(> 1.18.4) 要安装所有必需的软件包,请使用pip install -r requir
1
利用Neural Renderer神经网络渲染器实现3D模型渲染
2023-07-06 09:23:23 1.3MB 人工智能
1
文件包里包含关于SNN最新技术的相关文档
2023-06-09 11:20:42 5.16MB SNN FPGA
1
图像去模糊 一张照片捕捉到一个难忘的时刻却后来才发现它模糊不清,这真是令人失望。 图像去模糊也可以用作其他应用程序的预处理步骤。 该项目使您可以对图像进行模糊处理。 用法 预先训练的权重和使用的模型存储在存储库中。 您可以直接加载它们并运行Demo.ipynb中显示的去模糊处理 如果要从头训练模型,则训练脚本位于deblur.py中 模型 使用了具有3个卷积层的CNN模型。 训练集包括4000张大小为96x96的模糊图像,目标集由相应的清晰图像组成。 实际的去模糊是在尺寸为32x32的较小色块上学习的。 在预测期间,可以一次从32x32的色块中预测出清晰的色块。 样品 水果: 伦娜:
1
基于AI的地震信号检测器和鉴相器 描述 EQTransformer是基于AI的地震信号检测器和相位(P&S)拾取器,基于带有注意机制的深度神经网络。 它具有专门为地震信号设计的分层体系结构。 EQTransformer已经接受了全球地震数据的培训,可以同时高效地执行检测和到达时间的选择。 除了预测概率,它还可以提供估计的模型不确定性。 EQTransformer python 3软件包包括用于下载连续地震数据,进行预处理,执行地震信号检测以及使用预先训练的模型进行相位(P&S)拾取,构建和测试新模型以及执行简单的相位关联的模块。 开发人员:S. Mostafa Mousavi 链接 说明文件: : 论文: https : //rdcu.be/b58li 参考 Mousavi,SM,Ellsworth,WL,Zhu,W.,Chuang,L,Y。和Beroza,G,C。 Nat C
2023-05-04 10:43:53 31.34MB deep-learning neural-network detection earthquakes
1
敏锐模型动物园 Acuity模型动物园包含一组由Acuity工具包创建或转换的流行神经网络模型(来自Caffe,Tensorflow,PyTorch,TFLite,DarkNet或ONNX)。 模型查看器 Acuity使用JSON格式描述神经网络模型,并且我们提供了一个来帮助可视化数据流图。 从4.6.8开始,模型查看器是一部分。 分类 ( ) ( ) ( ) ( ) ( ) ( OriginModel ) Mobilenet-v2 ( OriginModel ) Mobilenet-v3 ( OriginModel ) EfficientNet ( OriginModel ) EfficientNet(EdgeTPU) ( OriginModel ) Nasnet-Large ( OriginModel ) Nasnet-Mobile ( Or
2023-05-03 14:32:56 1.64MB caffe deep-learning neural-network model-zoo
1
PyTextGCN 对TextGCN的重新实现。 此实现使用Cython进行文本到图形的转换,因此速度相当快。 图形和GCN基于库。 要求 该项目的构建具有: 的Python 3.8.5 Cython 0.29.21 CUDA 10.2(GPU支持可选) scikit学习0.23.2 pytorch 1.7.0 火炬几何1.6.3 海湾合作委员会9.3.0 nltk 3.5 scipy 1.5.2 至少Text2Graph模块也应该与这些库的其他版本一起使用。 安装 cython编译可以从项目的根目录执行: cd textgcn/lib/clib && python setup.py build_ext --inplace 用法 要从称为X的字符串列表(每个字符串包含一个文档的文本)中计算出图形,请创建名为y的标签列表以及测试索引test_idx的列表,只需运行:
1
神经元 并行神经网络微框架。 在阅读论文。 特征 任意形状和大小的密集、完全连接的神经网络 具有均方误差成本函数的反向传播 基于数据的并行性 几个激活函数 支持 32、64 和 128 位浮点数 入门 获取代码: git clone https://github.com/modern-fortran/neural-fortran cd neural-fortran 依赖项: Fortran 2018 兼容编译器 OpenCoarrays(可选,用于并行执行,仅限 GFortran) BLAS、MKL(可选) 使用 fpm 构建 以串行模式构建 fpm build --flag "-cpp -O3 -ffast-math fcoarray=single" 以并行模式构建 如果您使用 GFortran 并希望并行运行神经 fortran,则必须首先安装OpenCoarray
2023-04-19 17:15:26 16.22MB machine-learning neural-network fortran parallel
1
解开变分自编码器 PyTorch 实现的论文 团队成员: 安德烈亚斯·斯帕诺普洛斯 ( ) Demetrios Konstantinidis ( ) 存储库结构 目录包含我们迄今为止创建的模型。 一路上还会有更多。 python脚本是主要的可执行文件。 目录包含可用于训练和测试的 colab notebook。 在目录中有一个 ,其中详细解释了变分自动编码器的基本数学概念。 在目录中有一些配置文件可用于创建模型。 在目录中有我们通过使用各种配置运行模型得到的结果。 楷模 目前支持两种模型,一个简单的变分自动编码器和一个解开版本 (beta-VAE)。 模型实现可以在目录中找到。 这些模型是使用PyTorch Lightning开发的。 变分自编码器 变分自编码器是一个生成模型。 它的目标是学习数据集的分布,然后从相同的分布中生成新的(看不见的)数据点。 在下图中,我们可
1
研究@ Magic Leap(CVPR 2020,口腔) SuperGlue推理和评估演示脚本 介绍 SuperGlue是在Magic Leap完成的2020 CVPR研究项目。 SuperGlue网络是一个图形神经网络,结合了最佳匹配层,该层经过训练可以对两组稀疏图像特征进行匹配。 此存储库包含PyTorch代码和预训练权重,用于在关键点和描述符之上运行SuperGlue匹配网络。 给定一对图像,您可以使用此存储库在整个图像对中提取匹配特征。 SuperGlue充当“中端”,在单个端到端体系结构中执行上下文聚合,匹配和过滤。 有关更多详细信息,请参见: 全文:PDF: 。 作者: Pa
1