NumpyDL:深度学习库。 为了教育。 基于纯净的Numpy。 支持CNN,RNN,LSTM,GRU等

上传者: 42144199 | 上传时间: 2024-02-23 17:06:34 | 文件大小: 16.61MB | 文件类型: ZIP
NumpyDL:Numpy深度学习库 内容描述 NumpyDL是: 基于纯Numpy / Python 对于DL教育 特征 其主要特点是: 纯洁的脾气暴躁 原生于Python 基本支持自动区分 提供了常用的模型:MLP,RNN,LSTM和CNN 几个AI任务的示例 对于玩具聊天机器人应用 文献资料 可用的在线文档: 最新文件 开发文档 稳定文档 可用的离线PDF: 最新PDF 安装 使用pip安装NumpyDL: $ > pip install npdl 从源代码安装: $ > python setup.py install 例子 NumpyDL提供了一些AI任务示例: 句子分类 示例/lstm_sentence_classification.py中的LSTM 例子中的CNN / cnn_sentence_classification.py mnist手写识

文件下载

资源详情

[{"title":"( 144 个子文件 16.61MB ) NumpyDL:深度学习库。 为了教育。 基于纯净的Numpy。 支持CNN,RNN,LSTM,GRU等","children":[{"title":"make.bat <span style='color:#111;'> 811B </span>","children":null,"spread":false},{"title":".coveragerc <span style='color:#111;'> 63B </span>","children":null,"spread":false},{"title":"fix_rtd.css <span style='color:#111;'> 143B </span>","children":null,"spread":false},{"title":"optimizer_5.gif <span style='color:#111;'> 893.14KB </span>","children":null,"spread":false},{"title":"optimizer_6.gif <span style='color:#111;'> 714.05KB </span>","children":null,"spread":false},{"title":"optimizer_2.gif <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"optimizer_3.gif <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"chat.html <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"MANIFEST.in <span style='color:#111;'> 399B </span>","children":null,"spread":false},{"title":"Training.jpg <span style='color:#111;'> 114.07KB </span>","children":null,"spread":false},{"title":"Eval.jpg <span style='color:#111;'> 107.18KB </span>","children":null,"spread":false},{"title":"init_2.jpg <span style='color:#111;'> 9.44KB </span>","children":null,"spread":false},{"title":"init_3.jpg <span style='color:#111;'> 9.25KB </span>","children":null,"spread":false},{"title":"mlp_1.jpg <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"TREC_10.label <span style='color:#111;'> 23.29KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 623B </span>","children":null,"spread":false},{"title":"mnist-original.mat <span style='color:#111;'> 52.87MB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 741B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 265B </span>","children":null,"spread":false},{"title":"rnn_5.png <span style='color:#111;'> 429.23KB </span>","children":null,"spread":false},{"title":"cnn_10.png <span style='color:#111;'> 331.09KB </span>","children":null,"spread":false},{"title":"cnn_14.png <span style='color:#111;'> 299.06KB </span>","children":null,"spread":false},{"title":"cnn_7.png <span style='color:#111;'> 266.96KB </span>","children":null,"spread":false},{"title":"mlp_2.png <span style='color:#111;'> 233.93KB </span>","children":null,"spread":false},{"title":"cnn_13.png <span style='color:#111;'> 224.44KB </span>","children":null,"spread":false},{"title":"cnn_11.png <span style='color:#111;'> 224.11KB </span>","children":null,"spread":false},{"title":"rnn_3.png <span style='color:#111;'> 181.55KB </span>","children":null,"spread":false},{"title":"mlp_5.png <span style='color:#111;'> 180.41KB </span>","children":null,"spread":false},{"title":"mlp_3.png <span style='color:#111;'> 167.76KB </span>","children":null,"spread":false},{"title":"chatbot.png <span style='color:#111;'> 120.40KB </span>","children":null,"spread":false},{"title":"rnn_0.png <span style='color:#111;'> 115.04KB </span>","children":null,"spread":false},{"title":"rnn_7.png <span style='color:#111;'> 111.92KB </span>","children":null,"spread":false},{"title":"cnn_9.png <span style='color:#111;'> 110.63KB </span>","children":null,"spread":false},{"title":"mlp_4.png <span style='color:#111;'> 107.35KB </span>","children":null,"spread":false},{"title":"act_5.png <span style='color:#111;'> 93.83KB </span>","children":null,"spread":false},{"title":"cnn_2.png <span style='color:#111;'> 88.29KB </span>","children":null,"spread":false},{"title":"rnn_4.png <span style='color:#111;'> 81.51KB </span>","children":null,"spread":false},{"title":"rnn_1.png <span style='color:#111;'> 65.08KB </span>","children":null,"spread":false},{"title":"optimizier_4.png <span style='color:#111;'> 62.41KB </span>","children":null,"spread":false},{"title":"rnn1.png <span style='color:#111;'> 60.12KB </span>","children":null,"spread":false},{"title":"cnn_12.png <span style='color:#111;'> 57.46KB </span>","children":null,"spread":false},{"title":"rnn_2.png <span style='color:#111;'> 56.89KB </span>","children":null,"spread":false},{"title":"rnn_6.png <span style='color:#111;'> 52.88KB </span>","children":null,"spread":false},{"title":"cnn_3.png <span style='color:#111;'> 49.18KB </span>","children":null,"spread":false},{"title":"cnn_5.png <span style='color:#111;'> 42.22KB </span>","children":null,"spread":false},{"title":"cnn_4.png <span style='color:#111;'> 37.06KB </span>","children":null,"spread":false},{"title":"act_0.png <span style='color:#111;'> 36.17KB </span>","children":null,"spread":false},{"title":"cnn_1.png <span style='color:#111;'> 31.44KB </span>","children":null,"spread":false},{"title":"act_1.png <span style='color:#111;'> 28.18KB </span>","children":null,"spread":false},{"title":"act_4.png <span style='color:#111;'> 27.51KB </span>","children":null,"spread":false},{"title":"cnn_6.png <span style='color:#111;'> 26.31KB </span>","children":null,"spread":false},{"title":"act_2.png <span style='color:#111;'> 23.45KB </span>","children":null,"spread":false},{"title":"act_3.png <span style='color:#111;'> 19.79KB </span>","children":null,"spread":false},{"title":"init_1.png <span style='color:#111;'> 13.51KB </span>","children":null,"spread":false},{"title":"init_4.png <span style='color:#111;'> 8.20KB </span>","children":null,"spread":false},{"title":"cnn_8.png <span style='color:#111;'> 6.68KB </span>","children":null,"spread":false},{"title":"optimizer_1.png <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false},{"title":"recurrent.py <span style='color:#111;'> 27.62KB </span>","children":null,"spread":false},{"title":"optimizers.py <span style='color:#111;'> 15.77KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 14.06KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 11.75KB </span>","children":null,"spread":false},{"title":"objectives.py <span style='color:#111;'> 11.23KB </span>","children":null,"spread":false},{"title":"mlp_bp.py <span style='color:#111;'> 10.99KB </span>","children":null,"spread":false},{"title":"cnn_visualization.py <span style='color:#111;'> 9.47KB </span>","children":null,"spread":false},{"title":"initializations.py <span style='color:#111;'> 8.73KB </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 7.16KB </span>","children":null,"spread":false},{"title":"pooling.py <span style='color:#111;'> 7.00KB </span>","children":null,"spread":false},{"title":"core.py <span style='color:#111;'> 6.99KB </span>","children":null,"spread":false},{"title":"test_initialization.py <span style='color:#111;'> 5.86KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 5.53KB </span>","children":null,"spread":false},{"title":"convolution.py <span style='color:#111;'> 5.00KB </span>","children":null,"spread":false},{"title":"mlp-mnist.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"normalization.py <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"test_activaton.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"lstm_sentence_classification.py <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"rnn-character-lm.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"lstm-character-lm.py <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"test_core.py <span style='color:#111;'> 2.32KB </span>","children":null,"spread":false},{"title":"test_objectives.py <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"base.py <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"cnn_sentence_classification.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"shape.py <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"embedding.py <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"test_recurrent.py <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"test_optimizer.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"test_pooling.py <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"test_examples.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"random.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"cnn-minist.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"test_embedding.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 932B </span>","children":null,"spread":false},{"title":"mlp-digits.py <span style='color:#111;'> 834B </span>","children":null,"spread":false},{"title":"test_model.py <span style='color:#111;'> 825B </span>","children":null,"spread":false},{"title":"test_random.py <span style='color:#111;'> 673B </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 632B </span>","children":null,"spread":false},{"title":"test_normalization.py <span style='color:#111;'> 596B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明