NumPyNet:纯Numpy中的神经网络库

上传者: 42144554 | 上传时间: 2024-02-23 17:07:14 | 文件大小: 2.22MB | 文件类型: ZIP
作者 项目 文献资料 建置状态 代码质量 覆盖范围 NumPyNet Linux / MacOS : Windows : 编码: 编码节拍: 纯NumPy中的神经网络-NumPyNet 在神经网络模型的纯Numpy中实现。 NumPyNet支持语法非常接近Keras之一,但它使用只写了Numpy功能:这种方式很轻,快速安装和使用/修改。 理论 先决条件 安装 效率 用法 贡献 参考 作者 执照 致谢 引文 概述 NumPyNet是作为研究神经网络模型的教育框架而诞生的。 编写该指南的目的是平衡代码的可读性和计算性能,并提供大量文档,以更好地理解每个脚本的功能。 该库是用纯Python编写的,唯一使用的外部库是Numpy (科学研究的基本软件包)。 尽管所有常见的库都通过广泛的文档进行了关联,但对于新用户而言,通常很难在其中引用的许多超链接和论文中四处移动。 NumPyNet试

文件下载

资源详情

[{"title":"( 160 个子文件 2.22MB ) NumPyNet:纯Numpy中的神经网络库","children":[{"title":"make.bat <span style='color:#111;'> 809B </span>","children":null,"spread":false},{"title":"yolov3.cfg <span style='color:#111;'> 8.14KB </span>","children":null,"spread":false},{"title":".codebeatignore <span style='color:#111;'> 29B </span>","children":null,"spread":false},{"title":".codebeatsettings <span style='color:#111;'> 193B </span>","children":null,"spread":false},{"title":".coveragerc <span style='color:#111;'> 432B </span>","children":null,"spread":false},{"title":"yolov3.data <span style='color:#111;'> 128B </span>","children":null,"spread":false},{"title":"maxpool.gif <span style='color:#111;'> 70.15KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"MANIFEST.in <span style='color:#111;'> 41B </span>","children":null,"spread":false},{"title":"dog.jpg <span style='color:#111;'> 159.92KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 638B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 15.86KB </span>","children":null,"spread":false},{"title":"index.md <span style='color:#111;'> 9.01KB </span>","children":null,"spread":false},{"title":"convolutional_layer.md <span style='color:#111;'> 8.69KB </span>","children":null,"spread":false},{"title":"batchnorm_layer.md <span style='color:#111;'> 7.64KB </span>","children":null,"spread":false},{"title":"avgpool_layer.md <span style='color:#111;'> 7.47KB </span>","children":null,"spread":false},{"title":"maxpool_layer.md <span style='color:#111;'> 6.88KB </span>","children":null,"spread":false},{"title":"yolo_layer.md <span style='color:#111;'> 6.85KB </span>","children":null,"spread":false},{"title":"connected_layer.md <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"pixelshuffle_layer.md <span style='color:#111;'> 6.24KB </span>","children":null,"spread":false},{"title":"shortcut_layer.md <span style='color:#111;'> 5.44KB </span>","children":null,"spread":false},{"title":"cost_layer.md <span style='color:#111;'> 5.34KB </span>","children":null,"spread":false},{"title":"activation_layer.md <span style='color:#111;'> 4.99KB </span>","children":null,"spread":false},{"title":"dropout_layer.md <span style='color:#111;'> 4.13KB </span>","children":null,"spread":false},{"title":"upsample_layer.md <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false},{"title":"route_layer.md <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false},{"title":"logistic_layer.md <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"CODE_OF_CONDUCT.md <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"l2norm_layer.md <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"l1norm_layer.md <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"input_layer.md <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"LICENSE.md <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"ISSUE_TEMPLATE.md <span style='color:#111;'> 1011B </span>","children":null,"spread":false},{"title":"authors.md <span style='color:#111;'> 952B </span>","children":null,"spread":false},{"title":"AUTHORS.md <span style='color:#111;'> 335B </span>","children":null,"spread":false},{"title":"PULL_REQUEST_TEMPLATE.md <span style='color:#111;'> 272B </span>","children":null,"spread":false},{"title":"coco.names <span style='color:#111;'> 625B </span>","children":null,"spread":false},{"title":"activation_logistic.png <span style='color:#111;'> 326.57KB </span>","children":null,"spread":false},{"title":"activation_elu.png <span style='color:#111;'> 296.03KB </span>","children":null,"spread":false},{"title":"dropout_prob10.png <span style='color:#111;'> 265.53KB </span>","children":null,"spread":false},{"title":"maxpool_3_2.png <span style='color:#111;'> 252.84KB </span>","children":null,"spread":false},{"title":"activation_relu.png <span style='color:#111;'> 211.49KB </span>","children":null,"spread":false},{"title":"average_3-2.png <span style='color:#111;'> 209.92KB </span>","children":null,"spread":false},{"title":"maxpool_30_20.png <span style='color:#111;'> 126.62KB </span>","children":null,"spread":false},{"title":"average_30-20.png <span style='color:#111;'> 123.40KB </span>","children":null,"spread":false},{"title":"shortcut_connection.png <span style='color:#111;'> 20.97KB </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 22.89KB </span>","children":null,"spread":false},{"title":"lstm_layer.py <span style='color:#111;'> 20.43KB </span>","children":null,"spread":false},{"title":"timing.py <span style='color:#111;'> 18.83KB </span>","children":null,"spread":false},{"title":"convolutional_layer.py <span style='color:#111;'> 18.32KB </span>","children":null,"spread":false},{"title":"test_optimizer.py <span style='color:#111;'> 17.92KB </span>","children":null,"spread":false},{"title":"rnn_layer.py <span style='color:#111;'> 15.54KB </span>","children":null,"spread":false},{"title":"image.py <span style='color:#111;'> 14.88KB </span>","children":null,"spread":false},{"title":"optimizer.py <span style='color:#111;'> 13.85KB </span>","children":null,"spread":false},{"title":"cost_layer.py <span style='color:#111;'> 13.19KB </span>","children":null,"spread":false},{"title":"maxpool_layer.py <span style='color:#111;'> 12.80KB </span>","children":null,"spread":false},{"title":"avgpool_layer.py <span style='color:#111;'> 12.20KB </span>","children":null,"spread":false},{"title":"test_yolo_layer.py <span style='color:#111;'> 12.14KB </span>","children":null,"spread":false},{"title":"connected_layer.py <span style='color:#111;'> 11.93KB </span>","children":null,"spread":false},{"title":"yolo_layer.py <span style='color:#111;'> 11.58KB </span>","children":null,"spread":false},{"title":"batchnorm_layer.py <span style='color:#111;'> 11.21KB </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 10.82KB </span>","children":null,"spread":false},{"title":"test_convolutional_layer.py <span style='color:#111;'> 10.29KB </span>","children":null,"spread":false},{"title":"shortcut_layer.py <span style='color:#111;'> 8.92KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 8.88KB </span>","children":null,"spread":false},{"title":"test_rnn_layer.py <span style='color:#111;'> 8.64KB </span>","children":null,"spread":false},{"title":"simple_rnn_layer.py <span style='color:#111;'> 8.55KB </span>","children":null,"spread":false},{"title":"test_batchnorm_layer.py <span style='color:#111;'> 8.48KB </span>","children":null,"spread":false},{"title":"test_connected_layer.py <span style='color:#111;'> 7.55KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 7.53KB </span>","children":null,"spread":false},{"title":"box.py <span style='color:#111;'> 6.94KB </span>","children":null,"spread":false},{"title":"shuffler_layer.py <span style='color:#111;'> 6.78KB </span>","children":null,"spread":false},{"title":"test_shortcut_layer.py <span style='color:#111;'> 6.63KB </span>","children":null,"spread":false},{"title":"logistic_layer.py <span style='color:#111;'> 6.25KB </span>","children":null,"spread":false},{"title":"parser.py <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"test_activation_layer.py <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"dropout_layer.py <span style='color:#111;'> 6.07KB </span>","children":null,"spread":false},{"title":"test_cost_layer.py <span style='color:#111;'> 5.95KB </span>","children":null,"spread":false},{"title":"test_route_layer.py <span style='color:#111;'> 5.79KB </span>","children":null,"spread":false},{"title":"upsample_layer.py <span style='color:#111;'> 5.78KB </span>","children":null,"spread":false},{"title":"test_upsample_layer.py <span style='color:#111;'> 5.72KB </span>","children":null,"spread":false},{"title":"activation_layer.py <span style='color:#111;'> 5.55KB </span>","children":null,"spread":false},{"title":"softmax_layer.py <span style='color:#111;'> 5.54KB </span>","children":null,"spread":false},{"title":"test_maxpool_layer.py <span style='color:#111;'> 5.42KB </span>","children":null,"spread":false},{"title":"detector.py <span style='color:#111;'> 5.39KB </span>","children":null,"spread":false},{"title":"test_avgpool_layer.py <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"test_softmax_layer.py <span style='color:#111;'> 5.08KB </span>","children":null,"spread":false},{"title":"test_dropout_layer.py <span style='color:#111;'> 4.82KB </span>","children":null,"spread":false},{"title":"l1norm_layer.py <span style='color:#111;'> 4.79KB </span>","children":null,"spread":false},{"title":"test_fmath.py <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false},{"title":"l2norm_layer.py <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false},{"title":"fmath.py <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false},{"title":"test_shuffler_layer.py <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false},{"title":"route_layer.py <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"input_layer.py <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"test_input_layer.py <span style='color:#111;'> 4.31KB </span>","children":null,"spread":false},{"title":"test_l1norm_layer.py <span style='color:#111;'> 4.09KB </span>","children":null,"spread":false},{"title":"MNIST.py <span style='color:#111;'> 4.07KB </span>","children":null,"spread":false},{"title":"test_l2norm_layer.py <span style='color:#111;'> 4.01KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明