g2o-通用图优化
Linux: 视窗:
g2o是用于优化基于图的非线性误差函数的开源C ++框架。 g2o被设计为易于扩展到各种问题,通常可以在几行代码中指定一个新问题。 当前的实现为SLAM和BA的多个变体提供了解决方案。
机器人技术和计算机视觉中的许多问题都涉及到最小化可以表示为图形的非线性误差函数。 典型实例是同时定位和映射(SLAM)或捆绑包调整(BA)。 这些问题的总体目标是找到能最大程度解释受高斯噪声影响的一组测量值的参数或状态变量的配置。 g2o是用于解决此类非线性最小二乘问题的开源C ++框架。 g2o被设计为易于扩展到各种问题,通常可以在几行代码中指定一个新问题。 当前的实现为SLAM和BA的多个变体提供了解决方案。 对于特定的问题,g2o的性能可与最新方法的实现相媲美(02/2011)。
描述方法的论文
Rainer Kuemmerle,Giorgio Gris
1