# 基于ROS和g2o框架的TEB局部路径规划器 ## 项目简介 本项目是一个基于ROS(机器人操作系统)和g2o优化框架的局部路径规划器,名为TEB(Timed Elastic Band)局部路径规划器。该项目主要用于移动机器人的导航任务,通过优化机器人的轨迹来实现高效、安全的局部路径规划。 ## 项目的主要特性和功能 1. 路径规划优化使用g2o框架进行轨迹优化,支持多种约束条件,包括障碍物避碰、速度限制、加速度限制、路径最短、机器人运动学模型等。 2. 动态障碍物处理能够处理动态障碍物的移动,并实时更新路径规划。 3. 可视化支持提供丰富的可视化功能,包括路径、障碍物、机器人模型等的可视化。 4. 多轨迹管理支持多轨迹的管理和优化,选择最佳轨迹进行执行。 5. 速度和姿态控制提供精确的速度和姿态控制,确保机器人按照规划的路径平稳移动。 6. 路径规划图构建通过图搜索算法构建路径规划图,支持深度优先搜索和概率路线图方法。 ## 安装使用步骤
2025-04-19 14:53:41 392KB
1
SLAM十四讲依赖 Ceres、g2o优化库,Windows下的编译较为困难。以下为VS的配置以及编译好的 1.头文件 D:\include\Ceres_Install\install\ceres\include;D:\include\Ceres_Install\install\glog\include;D:\include\Ceres_Install\install\gflags\include;D:\include\Ceres_Install\install\suitesparse\include;D:\include\eigen-3.4.0\eigen-3.4.0;D:\include\opencv\opencv\build\include\opencv2;D:\include\opencv\opencv\build\include;$(IncludePath)
2024-07-07 16:49:54 124.08MB opencv windows
1
非线性优化
2023-12-15 09:55:52 6.65MB
1
G2O计算摄像机位姿变化的例子。G2O计算摄像机位姿变化的例子。G2O计算摄像机位姿变化的例子。G2O计算摄像机位姿变化的例子。G2O计算摄像机位姿变化的例子。
2023-06-12 16:46:28 790KB G2O
1
官网下在的g2o源码,没有改过,有些小伙伴下github上下载有时候特别慢,可以来这自取。git clone https://github.com/RainerKuemmerle/g2o.git
2022-09-26 16:05:53 9.12MB 图像识别
1
2017年版本的g2o,经过本人亲自测试,可以使用。同时支持eigen3和qt5、qt4
2022-09-21 17:15:17 2.07MB g2o 图优化
1
自创建的.g2o文件,旋转拍摄一个瓶子
2022-07-14 09:00:39 7KB g2o
1
g2opy 这是图形优化C ++框架的python绑定。 g2o是用于优化基于图的非线性误差函数的开源C ++框架。 g2o被设计为易于扩展到各种问题,通常可以在几行代码中指定一个新问题。 当前的实现为SLAM和BA的多个变体提供了解决方案。 机器人技术和计算机视觉中的许多问题都涉及到最小化可以表示为图形的非线性误差函数。 典型实例是同时定位和映射(SLAM)或捆绑包调整(BA)。 这些问题的总体目标是找到能最大程度解释受高斯噪声影响的一组测量值的参数或状态变量的配置。 g2o是用于解决此类非线性最小二乘问题的开源C ++框架。 g2o被设计为易于扩展到各种问题,通常可以在几行代码中指定一个新问题。 当前的实现为SLAM和BA的多个变体提供了解决方案。 当前,该项目不支持用python编写用户定义的类型,但是预定义的类型足以实现最常见的算法,例如2d或3d场景中的PnP,ICP,捆绑
2022-04-16 19:56:57 4.46MB python binding slam bundle-adjustment
1
理解图优化,一步步带你看懂g2o框架.pdf
2022-04-13 16:01:38 1.81MB g2o
1
G2O 文档.pdf
2022-03-29 17:29:22 2.03MB G2O
1