Our purposes in writing this Second Edition | more than a quarter century after the original | remain the same: to give a systematic account of the major topics in pattern recognition, based whenever possible on fundamental principles. We believe that this provides the required foundation for solving problems in more specialized application areas such as speech recognition, optical character recognition, signal analysis, and so on. Since 1973, there has been an immense wealth of e®ort, and in many cases progress, on the topics we addressed in the First Edition. The pace of progress in algorithms for learning and pattern recognition has been exceeded only by the improvements in computer hardware. Some of the outstanding problems acknowledged in the First Edition have been solved, whereas others remain as frustrating as ever. Taken with the manifest usefulness of pattern recognition, this makes the ¯eld extremely vigorous and exciting.
2023-06-20 13:58:13 7.56MB pattern classification
1
深度包 博客文章中的详细信息: : 如何使用 克隆项目 下载我在创建的训练和测试集,或者如果您想从头开始处理数据,请下载。 使用docker镜像运行python代码: docker run -it \ -v /path/to/the/code:/data \ mhwong2007/deep_packet \ bash 如果要运行Jupyter笔记本,请使用以下命令: docker run -it \ -v /path/to/the/code:/data \ -p 8888:8888 \ mhwong2007/deep_packet \ jupyter lab --no-browser --ip=0.0.0.0 --port=8888 --NotebookApp.token= ' ' --allow-root 如果要自己构建环境,请在安装依赖项和库 数据预处理 python pr
2023-05-10 22:39:16 572KB deep-learning cnn pytorch traffic-classification
1
matlab曲线的颜色代码皮肤病变黑素瘤检测的自动分类 这项工作使用了《 2017年国际标准产业分类挑战》的数据库:针对黑色素瘤检测的皮肤病变分析。 它着重于挑战的第三部分:疾病分类。 考虑到我们已经具有分割图像和原始图像的超像素。 考虑到数据库图像占用的空间,我无法将它们上传到github,以下是直接从Google云端硬盘下载它们的链接: Python和Matlab都用于使用几何描述符,纹理描述符和颜色不规则特征的不同分类方法。 然后,将CNN用于预处理后的图像以实现更高的精度。 附件包含两个主要脚本,一个在Python中,另一个在MATLAB中,其余的MATLAB文件是该主要文件中使用的函数。 请阅读该报告(也包含在Skin_lesion_classifier.pdf文件中),以获取有关所用方法和所获得结果的详细信息,该报告以LateX和英语编写,脚本也以英语注释。 TB3:图像和图案识别2019-2020 项目-皮肤病变的自动分类(黑色素瘤检测)- 阿卜杜勒·哈基姆·贝内奇哈卜 2020年1月 该项目的目的是提出一种基于图像分析和机器学习的皮肤病变自动分类方法。 1第1部分:数据
2023-05-07 20:49:23 640KB 系统开源
1
木薯叶病分类 目录 我的木薯叶病比赛学习历程。我花了整整3周的时间参加这项比赛。 目标: 对木薯叶上呈现的疾病类型进行分类。有五个不同的标签:木薯细菌枯萎病(CBB),木薯褐斑病(CBSD),木薯绿斑驳病(CGM),木薯花叶病(CMD)和健康。 挑战: 这项比赛有一些挑战。 每个班级之间的分配不平衡。标签3 CMD与其他类别之间存在巨大差异。这可能会对预测产生偏差。因此,必须采用加权损失函数或过采样。 嘈杂的标签。一幅图像中有很多错误标记的图像和多种疾病,可能会影响模型预测。为了解决这个问题,可以实现多种技术,例如标签平滑,混合,剪切混合增强。 我在截止日期前参加了比赛,因此就如何处理嘈杂的标签以及哪种模型在本次比赛中效果最好,进行了很多讨论。大多数竞争对手都采用了Efficientnet和视觉变压器(ViT),因此在尝试其他模型(例如ViT,DeiT,Hybrid Resnet和ViT)
2023-04-26 23:01:51 2KB
1
PyTextGCN 对TextGCN的重新实现。 此实现使用Cython进行文本到图形的转换,因此速度相当快。 图形和GCN基于库。 要求 该项目的构建具有: 的Python 3.8.5 Cython 0.29.21 CUDA 10.2(GPU支持可选) scikit学习0.23.2 pytorch 1.7.0 火炬几何1.6.3 海湾合作委员会9.3.0 nltk 3.5 scipy 1.5.2 至少Text2Graph模块也应该与这些库的其他版本一起使用。 安装 cython编译可以从项目的根目录执行: cd textgcn/lib/clib && python setup.py build_ext --inplace 用法 要从称为X的字符串列表(每个字符串包含一个文档的文本)中计算出图形,请创建名为y的标签列表以及测试索引test_idx的列表,只需运行:
1
数据集8732标记了以下10类城市声音的声音摘录(<= 4s):空调,car_horn,儿童游戏,dog_bark,钻探,引擎怠速,gun_shot,手提凿岩机,警笛声和street_music。 使用称为开源库完成特征提取。 Librosa允许您加载声音文件,提取特征,生成波形图等。 我们将研究标准的多感知器模型以及卷积网络和递归网络。 这是使用完成的,它提供了高级神经网络API。 我想在将来尝试使用的一种模型是时间卷积网络(TCN),它基于对。 TCN的最重要组成部分是因果卷积。 “因果”仅表示在时间步t处的过滤器只能看到不迟于t的输入。 使用膨胀卷积的目的是用更少的参数和更少的层来获得更大的接收场。 TCN还使用残差块,将两个膨胀的卷积层堆叠在一起,并将最终卷积的结果加回到输入中以获得块的输出。 要求: librosa == 0.6.0 熊猫== 0.20.3 凯拉斯== 2.
2023-04-18 17:06:25 2.96MB JupyterNotebook
1
带有元数据的文本的最小监督分类 该项目提供了一个对文本与元数据进行分类的弱监督框架。 安装 为了进行培训,强烈建议您使用GPU。 凯拉斯 该代码基于Keras库。 您可以找到安装说明。 相依性 该代码是用Python 3.6编写的。 依赖关系总结在文件requirements.txt 。 您可以像这样安装它们: pip3 install -r requirements.txt 快速开始 要在我们的论文中再现结果,您需要首先下载。 我们的论文中使用了五个数据集。 不幸的是,由于我们对数据提供者的承诺,因此无法发布GitHub-Sec数据集。 其他四个数据集可用。 解压缩下载的文件后,您可以分别看到对应于这四个数据集的四个文件夹。 数据集 文件夹名称 #文件 #班 类名(该类中的#Repository) bio/ 876 10 序列分析(210),基因组分析(176),基因表达(6
1
使用 CNN-MLP 的音频分类 使用深度学习(CNN、MLP)的多类音频分类 引文 如果你觉得这个项目有帮助,请引用如下: @software{vishal_sharma_2020_3988690, author = {Vishal Sharma}, title = {{vishalshar/Audio-Classification-using-CNN-MLP: first release}}, month = Aug, year = 2020, publisher = {Zenodo}, version = {v1.0.0}, doi = {10.5281/zenodo.3988690}, url = {
2023-04-04 19:11:34 2.43MB audio classifier cnn audio-analysis
1
EfficientNet_classification。EfficientNet在pytorch框架下实现图像分类,拿走即用。该文件包含python语言编写的model文件、my_dataset文件、predict文件、train文件、配置文件等。能够实现训练自己的数据集进行图像分类,以及对训练后的网络进行测试。EfficientNet利用NAS(Neural Architecture Search)搜索技术,将输入分辨率,网络的深度、宽度三者同时考虑,搭建更nice的网络结构。EfficientNet-B0的网络框架,总体看,分成了9个Stage:Stage1 是一个卷积核大小为3x3,步距为2的普通卷积层(包含BN和激活函数Swish);Stage2~Stage8 是在重复堆叠 MBConv 结构;Stage9 是一个普通的1x1的卷积层(包含BN和激活函数Swish) + 一个平均池化层 + 一个全连接层组成
2023-04-03 10:06:10 12KB pytorch EfficientNet 图像分类 python
1
脑电信号分类 使用机器学习进行睁眼和闭眼分类
2023-04-02 10:59:04 2.18MB eeg eeg-signals python-3 eeg-classification
1