银杏的寿命很长,其生长相对较慢。 但是,对该物种中与生长相关的基因知之甚少。 我们通过在转录组水平上开发多态性分子标记,将mRNA测序(RNA-Seq)与大量分离子分析(BSA)结合起来,精细绘制重要的农艺性状基因。 在这项研究中,对银杏半同胞家族的高生长(GD)和低生长(BD)样品进行了转录组测序。 组装干净的读段后,检测到601个差异表达基因,其中513个被分配了功能注释。 单核苷酸多态性(SNP)分析鉴定出与GD和BD组中的119个基因相关的SNP; 这些基因中有58个带有注释。 与BD组相比,GD组中两个Homeobox-亮氨酸拉链蛋白基因上调。 因此,这些很可能与银杏的高生长有关。 这项研究提供了分子水平的数据,可用于未来生长计划的高生长银杏半同胞族种子选择。
2024-01-14 20:04:05 3.97MB 转录组测序
1
蚕豆(Vicia faba L)种子是人类和动物重要的植物蛋白来源。 在蚕豆种子的RNA-Seq中发现了总共15,697个具有途径注释的差异表达基因(DEG)。 总共发现了75条重要的KEGG途径丰度,并且在所有基因型中保守了9条途径。 在2至6对基因型的比较中,发现41条重要途径被部分保留,而25对重要途径是单对基因型所独有的。 发现了与蚕豆种子水合能力性状相关的8条特定的重要途径,以及与PSbMV种子染色性状相关的9条特定的重要途径。 DEGs通过育种谱系选择信息证实了这些品种之间的遗传距离,并且PCA图清楚地说明了这些基因型内的遗传距离。
2024-01-14 17:26:19 6.21MB 行业研究
1
k-means聚类算法及matlab代码安全聚类 SAFE(来自Ensemble的单细胞聚合聚类):单细胞RNA-seq数据的聚类集成 尽管最近已经开发出几种方法来使用单细胞RNA-seq(scRNA-Seq)数据对细胞类型进行聚类,但它们利用了数据的不同特征,并且在聚类数量和实际聚类分配方面均产生了不同的结果。 在这里,我们介绍了SAFE聚类,单细胞聚合(来自Ensemble)聚类,这是一种灵活,准确且可靠的聚类scRNA-Seq数据的方法。 SAFE聚类将多种聚类方法的结果作为输入,以构建一个共识解决方案。 SAFE聚类目前嵌入了四种最先进的方法,即SC3,CIDR,Seurat和t-SNE + k -means。 并使用三种基于超图的分区算法将这四种方法的解决方案整合在一起。 SAFE聚类由Yuchen Yang []和Yun Yun []维护。 新闻与更新 2020年9月7日 2.00版已发布 SAFEclustering中使用的Seuart版本已更新为版本3。Seuratv.2不再兼容 SAFE聚类仅接受计数数据。 其他格式,例如FPKM,CPM和RPKM不再兼容 2018年
2023-04-18 14:15:42 4.17MB 系统开源
1
康诺斯 Conos:在样本网络上聚类 什么是conos? Conos是一个R包,用于将大量单细胞RNA-seq数据集组合在一起,从而既可以识别复发性细胞簇,又可以在多样本或Atlas规模集合中的数据集之间传播信息。 它着重于跨异构样本集合的同源细胞类型的均匀映射。 例如,用户可以研究来自癌症患者的数十种外周血样本的收集以及数十种对照,其中可能包括相关组织(如淋巴结)的样本。 它是如何工作的? Conos应用了许多容易出错的方法中的一种来对齐集合中的每对样本,从而建立了加权的样本间单元间链接。 然后可以分析所得的联合图,以识别不同样品之间的亚群。 相同类型的单元格将倾向于在许多此类成对比较中相互映射,从而形成可以识别为簇(图社区)的集团。 Conos处理可以分为三个阶段: 阶段1:过滤和归一化使用标准软件包对样本面板中的每个单独的数据集进行过滤和归一化,以进行单数据集处理: pag
2023-04-17 22:04:16 10.14MB scrna-seq single-cell-rna-seq batch-correction R
1
多对象单细胞反卷积(MuSiC) MuSiC是一种反卷积方法,它利用跨学科的scRNA-seq来估计大量RNA-seq数据中的细胞类型比例。 如何引用MuSiC 请引用以下出版物: 具有多对象单细胞表达参考的大体积组织细胞类型反卷积X.Wang,J.Park,K.Susztak,NRNR Zhang,M.Li 自然通讯。 2019年1月22日 安装 # install devtools if necessary install.packages( ' devtools ' ) # install the MuSiC package devtools :: install_github( ' xuranw/MuSiC ' ) # load library( MuSiC ) 更多信息 请参阅。
2022-07-13 15:18:32 62.98MB statistical-genetics single-cell-rna-seq R
1
科学路径 通过整合途径改善单细胞RNA-seq聚类 内容描述 我们设计了一个框架(sciPath),以通过整合途径来研究现有单细胞聚类的准确性和鲁棒性,包括10种最新的单细胞聚类方法和4种途径数据库,途径整合方法和一套完整的评估指标。 准备工作 1.数据集演示数据集保存在".//Demo_data" ,包括scRNA-seq矩阵(".//Demo_data//matrix") ,路径(".//Demo_data//pathway")和单元格标签(".//Demo_data//label") 。 2.软件包安装脱机软件包和联机软件包的安装代码保存在".//package//package_install.R" 。 代号 1. clustering_by_gene_only.R 仅考虑基因水平信息的单细胞聚类,包括(1)K均值,(2)分级,(3)光谱,(4)DBSCAN,(5)SC3,(6)
2022-06-23 17:08:04 23.76MB Python
1
kmeans 分析matlab代码CS 221 最终项目代码 2015 年 12 月 8 日 我的大部分分析都是在 python 中完成的。 请按以下顺序查看代码: 自编码器.ipynb。 在这个 ipython notebook 中,我加载数据,然后使用 Keras 训练各种自动编码器。 我还测试了另一个 python 包 Theanet,但它没有给我想要的那么多控制权。 训练完自动编码器后,我会保存它并将其传输到服务器,在那里我可以执行更重的计算。 Method_pipeline.m。 此 MATLAB 文件加载编码数据和表达式矩阵。 它运行 ADMM (jz_ADMM.m),在某些点使用收缩算子 (jz_shrink.m),求解方程。 5 在纸上。 此代码为各种 lambda 输出一系列 U。 分析.ipynb。 在这个 ipython notebook 中,我使用各种函数对 Method_pipeline.m 生成的矩阵执行 kmeans 聚类和可视化 (PCA)。 请参阅代码中的注释以获取更多详细信息。
2022-05-18 09:26:55 3.33MB 系统开源
1
yeast_data:酵母RNA-seq数据分析
2022-05-17 15:39:16 631KB JupyterNotebook
1
scNym-用于单细胞分类的半监督对抗神经网络 scNym是一个神经网络模型,用于根据单细胞分析数据(例如scRNA-seq)预测细胞类型,并从这些模型中得出细胞类型表示形式。 尽管细胞类型分类是主要的用例,但是这些模型可以将单个细胞概况映射到任意输出类别(例如实验条件)。 我们已经在Genome Research的最新论文中详细描述了scNym 。 如果您发现此工具有用,请引用我们的工作。 我们也有一个研究网站,介绍scNym简报- 用于单细胞分类的半监督对抗神经网络。 雅各布·金梅尔(Jacob C.Kimmel)和大卫·凯利(David R.Kelley)。 基因组研究。 2021. doi: : BibTeX @article{kimmel_scnym_2021, title = {Semi-supervised adversarial neural networ
1
TED(现称为BayesPrism) 使用统计边际化(BayesPrism)推断贝叶斯细胞比例重建:肿瘤微环境组成和基因表达的完全贝叶斯推断。 BayesPrism由反卷积模块和嵌入学习模块组成。去卷积模块利用来自scRNA-seq的细胞类型特异性表达谱,并实施完全贝叶斯推断,以根据肿瘤样品的大量RNA-seq表达共同估算细胞类型组成和细胞类型特异性基因表达的后验分布。嵌入学习模块使用期望最大化(EM)来使用肿瘤途径的线性组合来近似肿瘤表达,同时以反卷积模块估算的非肿瘤细胞的表达和分数为条件。 v1.1:添加了新功能,允许使用从scRNA-seq数据(例如,通过更精细的聚类)获得的细胞亚型/细胞状态信息,从而产生更细粒度的细胞类型,以更好地代表异质群体。它可以用来定义例如肿瘤微环境中的髓样或淋巴细胞群。 BayesPrism将计算这些子类型/状态的后验和。 v1.2:增加了功能cle
2022-04-26 16:44:50 59.15MB scrna-seq deconvolution bulk-rna-seq tumor-cells
1