scnym:用于单细胞转录组学数据分类的半监督对抗神经网络

上传者: 42176612 | 上传时间: 2022-05-15 21:40:18 | 文件大小: 576KB | 文件类型: ZIP
scNym-用于单细胞分类的半监督对抗神经网络 scNym是一个神经网络模型,用于根据单细胞分析数据(例如scRNA-seq)预测细胞类型,并从这些模型中得出细胞类型表示形式。 尽管细胞类型分类是主要的用例,但是这些模型可以将单个细胞概况映射到任意输出类别(例如实验条件)。 我们已经在Genome Research的最新论文中详细描述了scNym 。 如果您发现此工具有用,请引用我们的工作。 我们也有一个研究网站,介绍scNym简报- 用于单细胞分类的半监督对抗神经网络。 雅各布·金梅尔(Jacob C.Kimmel)和大卫·凯利(David R.Kelley)。 基因组研究。 2021. doi: : BibTeX @article{kimmel_scnym_2021, title = {Semi-supervised adversarial neural networ

文件下载

资源详情

[{"title":"( 35 个子文件 576KB ) scnym:用于单细胞转录组学数据分类的半监督对抗神经网络","children":[{"title":"scnym-master","children":[{"title":"demo_script.sh <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":".github","children":[{"title":"workflows","children":[{"title":"python-package.yml <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"notebooks","children":[{"title":"scnym_classif_tutorial.ipynb <span style='color:#111;'> 352.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"configs","children":[{"title":"default_config.txt <span style='color:#111;'> 298B </span>","children":null,"spread":false}],"spread":true},{"title":"VERSION <span style='color:#111;'> 6B </span>","children":null,"spread":false},{"title":"baseline","children":[{"title":"baseline.py <span style='color:#111;'> 14.62KB </span>","children":null,"spread":false},{"title":"baseline.R <span style='color:#111;'> 13.93KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 644B </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 523B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 8.92KB </span>","children":null,"spread":false},{"title":"assets","children":[{"title":"scnym_mmdan_diagram.png <span style='color:#111;'> 95.21KB </span>","children":null,"spread":false},{"title":"processed_data.md <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"scnym_icon.png <span style='color:#111;'> 23.25KB </span>","children":null,"spread":false},{"title":"scnym_mixmatch_diagram.png <span style='color:#111;'> 105.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"setup.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 11.41KB </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"test_mixmatch.py <span style='color:#111;'> 16.88KB </span>","children":null,"spread":false},{"title":"test_da.py <span style='color:#111;'> 12.59KB </span>","children":null,"spread":false},{"title":"test_api.py <span style='color:#111;'> 14.02KB </span>","children":null,"spread":false},{"title":"test_dataprep.py <span style='color:#111;'> 12.55KB </span>","children":null,"spread":false},{"title":"test_main.py <span style='color:#111;'> 7.07KB </span>","children":null,"spread":false},{"title":"test_model.py <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"test_utils.py <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"test_trainer.py <span style='color:#111;'> 4.69KB </span>","children":null,"spread":false}],"spread":true},{"title":"scnym","children":[{"title":"utils.py <span style='color:#111;'> 22.26KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 59.72KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 12.31KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 310B </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 6.90KB </span>","children":null,"spread":false},{"title":"interpret.py <span style='color:#111;'> 17.24KB </span>","children":null,"spread":false},{"title":"__main__.py <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"scnym_ad.py <span style='color:#111;'> 6.07KB </span>","children":null,"spread":false},{"title":"dataprep.py <span style='color:#111;'> 20.55KB </span>","children":null,"spread":false},{"title":"api.py <span style='color:#111;'> 46.05KB </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 65.92KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明