描述 该项目旨在消除源自手持摄像机运动或抖动的运动模糊。 它旨在盲目工作,即不需要模糊知识。 使用卷积神经网络估计运动模糊,然后将其用于校准反卷积算法。 该项目包括两个不同的部分: -图像处理部分,包括反卷积算法和正向模型。 -使用神经网络的模糊估计部分。 有关某些视觉见解,请参见 。 该库使用Python3编码。 无论是在图像处理(复杂模糊的建模)还是在模糊估计方面,其贡献都倍受欢迎。 消息 从2020年5月开始,该项目重新启动! 我们从tensorflow转到pytorch。 我们将把运动模糊模型扩展到比简单的线性运动更复杂的运动。 我们还将解决空间变异情况。 我们计划扩展到电视去模糊。 进步 截至目前(2020年5月),我们支持使用Wiener滤波器对线性模糊进行模糊处理。 安装 在您喜欢的conda环境中,键入: pip install -e . 为了进行开发,请按
1
斯坦福地震数据集(STEAD):用于AI的全球地震信号数据集 您可以从这里获取wavefoms: 以下每个文件包含一个hdf5(数据)文件和一个CSV(元数据)文件,用于约200k 3C波形。 您可以下载所需的块,然后使用存储库中提供的代码将它们合并到一个文件中。 GB)噪音 GB)本地地震 GB)本地地震 GB)本地地震 GB)本地地震 GB)本地地震 如果您拥有快速的互联网连接,则可以使用以下链接将整个数据集下载到一个文件中: https://rebrand.ly/整个(合并〜85 GB)本地地震+噪音 注意1:某些Windows和Linux操作系统的解压缩程序有大小限制。 如果解压缩文件时遇到问题,请尝试使用“ 7Zip”软件。 注意2:hdf5文件中还提供了所有元数据(作为与每个波形关联的属性)。 注3:对于某些噪声数据,3个分量的波形相同。 这些与单通道电台
2021-11-09 20:40:33 3.21MB deep-learning dataset stanford earthquake
1
深度微词典学习和编码网络(WACV 2019) | | 引文 如果您使用此代码进行研究,请引用我们的论文。 @article{tang2020dictionary, title={When Dictionary Learning Meets Deep Learning: Deep Dictionary Learning and Coding Network for Image Recognition With Limited Data.}, author={Tang, Hao and Liu, Hong and Xiao, Wei and Sebe, Nicu}, journal={IEEE TNNLS}, year={2020} } @inproceedings{tang2019multichannel, title={Deep Micro-Dictionary
1
CS291K 使用CNN-LSTM组合神经网络模型对Twitter数据进行情感分析 论文: : 博客文章: : 动机 该项目旨在扩展我们以前使用简单的前馈神经网络(位于此处: & )进行的情绪分析工作。 相反,我们希望尝试使用Tensorflow构建组合的CNN-LSTM神经网络模型,以对Twitter数据进行情感分析。 依存关系 sudo -H pip install -r requirements.txt 运行代码 在train.py上,更改变量MODEL_TO_RUN = {0或1} 0 = CNN-LSTM 1 = LSTM-CNN 随时更改其他变量(batch_
1
Deep Learning 经典文章与代码(matlab) 有深度学习中必读经典,以及相应的matlab代码。 此外,文章中本人做的笔记,希望能帮助大家更好的理解。 文章为:1.A fast learning algorithm for deep belief nets(Hinton) 2. Learning Deep Architectures for AI (Bengio) 3. A Practical Guide to Training Restricted Boltzmann Machines(Hinton) 等。。 code 为经典的deep learning tool(matlab版),有DBN,NN,CNN,etc。
2021-11-09 17:09:11 31.21MB matlab DeepLearning
Network intrusion detection systems (NIDSs) play a crucial role in defending computer networks. However, there are concernsregardingthefeasibilityandsustainabilityofcurrentapproacheswhenfacedwiththedemandsofmodernnetworks.More specifically, these concerns relate to the increasing levels of required human interaction and the decreasing levels of detection accuracy. This paper presents a novel deep learning technique for intrusion detection, which addresses these concerns. We detail our proposed nonsymmetric deep autoencoder (NDAE) for unsupervised feature learning. Furthermore, we also propose our novel deep learning classification model constructed using stacked NDAEs.Ourproposedclassifierhasbeenimplementedingraphics processing unit (GPU)-enabled TensorFlow and evaluated using the benchmark KDD Cup ’99 and NSL-KDD datasets. Promising resultshavebeenobtainedfromourmodelthusfar,demonstrating improvements over existing approaches and the strong potential for use in modern NIDSs.
2021-11-09 17:01:39 962KB paper 深度学习论文
1
路径GAN 基于采样路径规划启发式生成对抗网络的Pytorch实现 表中的内容 结构 PathGAN的总体结构由两部分组成: RRT *搜索算法和 产生性的对抗性网络,用于产生有希望的区域 搜索算法 RRT*算法: 比较RRT*和Heuristic RRT* : GAN架构 GAN整体架构: GAN架构的详细信息: 数据集 数据集 训练 结果 执照 该项目在麻省理工学院获得许可。 链接 基于生成式对抗网络的启发式算法,用于基于采样的路径规划(arXiv文章) GAN路径查找器(arXiv文章)
1
修改TensorFlow 2.4及以上(或2.2,如果您使用XCenterNet标记为V1.0.0)上述tf.keras实施CenterNet对象检测在描述由兴义周,王德泉,菲利普·克雷恩布尔和TTFNet刘屠征,徐国栋,杨正,刘海峰,蔡登。有关原始实现,请参阅和。 此实现不是本文或pytorch实现的精确副本,因为我们已根据需要对其进行了修改,因此此回购协议具有一些功能: 使用tf2.2 + keras模型train_step和tf.data.dataset 使用来自tf2.3 +的tensorflow.keras.applications.efficiencynet 高效的网络和Resnet骨干网 tf.dataset的多尺度训练和扩充 添加了更强大的NMS,以获得更好的结果 无需姿势估计或3D,只需简单的物体检测 使用可变形卷积 易于在自己的数据集上进行微调,并自定义自己的图像增强,
1
对抗攻击PyTorch 是一个PyTorch库,其中包含对抗性攻击以生成对抗性示例。 干净的图像 对抗形象 目录 推荐的地点和配套 用法 :clipboard: 依存关系 火炬== 1.4.0 Python== 3.6 :hammer: 安装 pip install torchattacks或 git clone https://github.com/Harry24k/adversairal-attacks-pytorch import torchattacks atk = torchattacks . PGD ( model , eps = 8 / 255 , alpha = 2 / 255 , steps = 4 ) adversarial_images = atk ( images , labels ) :warning: 预防措施 在用于攻击之前,应使用transform [to.Tensor()]将所有图像缩放为
2021-11-09 16:08:45 10.09MB deep-learning pytorch adversarial-attacks Python
1
Triton推理服务器 最新版本:您目前在master分支上,该分支跟踪开发进度到下一发行版。 Triton Inference Server的最新版本是2.5.0,可在分支上。 Triton Inference Server提供了针对CPU和GPU优化的云和边缘推理解决方案。 Triton支持HTTP / REST和GRPC协议,该协议允许远程客户端为服务器管理的任何模型请求推理。 对于边缘部署,Triton可以作为具有C API的共享库使用,该API允许Triton的全部功能直接包含在应用程序中。 Triton Inference Server的当前版本为2.5.0,与上的triton
2021-11-09 09:59:51 4.75MB machine-learning cloud deep-learning gpu
1