对抗图书馆 该库包含与PyTorch中实施的对抗性攻击有关的各种资源。 它针对寻求最新攻击实施方案的研究人员。 编写代码是为了最大程度地提高效率(例如,通过偏爱PyTorch的底层函数),同时保持简单性(例如,避免抽象)。 因此,大多数库(尤其是攻击)都是使用纯函数实现的(只要有可能)。 在着重于攻击的同时,该库还提供了一些与对抗性攻击有关的实用程序:距离(SSIM,CIEDE2000,LPIPS),可见回调,预测,损失和辅助功能。 最值得注意的是,来自utils/attack_utils.py的功能run_attack对具有给定输入和标签且具有固定批处理大小的模型进行了攻击,并报告了与复杂性相关的指标(运行时和向前/向后传播)。 依存关系 该库的目标是使用最新版本的PyTorch进行更新,以便可以定期更新依赖项(可能会导致重大更改)。 pytorch> = 1.7.0 火炬视觉>
1
对峙 对面部识别进行物理对抗攻击的步骤 在应用蒙版之后,将左侧的输入图像检测为右侧的目标图像。 安装 创建一个虚拟环境 conda create -n facial pip 克隆仓库 git clone https://github.com/392781/Face-Off.git 安装所需的库 pip install -r requirements.txt 导入和使用! from adversarial_face_recognition import * ` 有关培训说明,请查看以开始少于30行。 用法 该库的目的是再次制造对抗攻击,再用FaceNet人脸识别器。 这是初步的工作,目的是使用一个可以戴在脸上的面具来产生更强壮的物理攻击。 当前管道由对齐的输入图像和计算出的蒙版组成。 然后使用dlib定向梯度检测器直方图将其输入到面部检测器中,以测试是否仍检测到面部。 然后将其传
1
对抗攻击PyTorch 是一个PyTorch库,其中包含对抗性攻击以生成对抗性示例。 干净的图像 对抗形象 目录 推荐的地点和配套 用法 :clipboard: 依存关系 火炬== 1.4.0 Python== 3.6 :hammer: 安装 pip install torchattacks或 git clone https://github.com/Harry24k/adversairal-attacks-pytorch import torchattacks atk = torchattacks . PGD ( model , eps = 8 / 255 , alpha = 2 / 255 , steps = 4 ) adversarial_images = atk ( images , labels ) :warning: 预防措施 在用于攻击之前,应使用transform [to.Tensor()]将所有图像缩放为
2021-11-09 16:08:45 10.09MB deep-learning pytorch adversarial-attacks Python
1
自动攻击 “可靠的评估对抗性鲁棒性与各种无参数攻击相结合” 弗朗切斯科·克鲁斯( Francesco Croce)和马蒂亚斯·海因( Matthias Hein) ICML 2020 我们建议使用四种不同攻击的组合来可靠地评估鲁棒性: APGD-CE ,这是我们在交叉熵方面的新的无步长PGD版本, APGD-DLR ,我们在新的DLR损失上推出的新的无步长PGD PGD版本, FAB ,将对抗性扰动的规范降到最低 , Square Attack ,一种查询效率高的黑盒攻击 。 注意:我们修复了攻击的所有超参数,因此不需要调整就可以测试每个新的分类器。 消息 [2020年10月] AutoAttack在新的基准测试用作标准评估,该基准包含最强大分类器的! 请注意,此页面和RobustBench的排行榜是同时维护的。 [2020年8月] 更新的版本:为了i)将AutoAtta
1