美国运输模式 US-Transporation是我们数据集的名称,其中包含来自13个以上用户的传感器数据。 鉴于文献中缺乏针对TMD的通用基准,我们通过一个简单的Android应用程序收集了一大套属于不同主题的度量。 我们公开发布数据集,以便其他研究人员可以从中受益,以进行进一步的改进和提高研究的可重复性。 我们的数据集是由不同性别,年龄和职业的人构建的。 此外,我们不对应用程序的使用施加任何限制,因此,每个用户都记录自己习惯执行该操作的数据,以便评估现实世界的状况。 除了可下载的数据集之外,在此页面中,您还可以找到Python的代码以提取特征,并建立机器学习模型以进行预测。 您可以在找到有关数据集和我们的工作的更多信息。 如果对您的研究有所帮助,请在您的出版物中引用以下论文: @article{carpineti18, Author = {Claudia Carpineti,
1
使用Python进行随机森林图像分类 使用Python的随机森林图像分类 请遵循以下文件夹结构。 图像分类(文件夹) 数据集(文件夹) 火车(文件夹) 图像Cat1文件夹 train_img.jpg train_img.jpg train_img.jpg ....... 图像Cat2文件夹 train_img.jpg train_img.jpg train_img.jpg ....... 测试(文件夹) test_img.jpg test_img.jpg test_img.jpg ....... 导出目录) 数据.h5 标签.h5 random_fo_image.py
2021-10-25 23:40:38 452KB JupyterNotebook
1
使用Cifar-10数据集进行图像分类 资料来源: 数据集下载: 抽象的: CIFAR-10数据集包含10个类别的60000个32x32彩色图像,每个类别6000个图像。 *有50000张训练图像和10000张测试图像。 数据集分为五个训练批次和一个测试批次,每个批次具有10000张图像。 测试批次包含每个类别中恰好1000个随机选择的图像。 训练批次按随机顺序包含其余图像,但是某些训练批次可能包含比另一类更多的图像。 在它们之间,培训批次包含每个班级的正好5000张图像。 这些是数据集中的类: 飞机 汽车 鸟 猫 鹿 狗 青蛙 马 船 卡车 这些类是完全互斥的。 即汽车和卡车之间没有重叠。 “汽车”包括轿车,越野车和类似的东西。 “卡车”仅包括大型卡车。 都不包括皮卡车。 方法 导入的数据集 分析数据 应用的PCA 使用随机森林进行预测 使用KNN进行预测 使用Logist
1
基于网络的入侵检测系统:基于网络入侵检测系统的最后一年项目
1
Random-Forest-Matlab-master,随机森林
2021-10-16 15:38:35 42KB 随机森林
1
matlab 编写的 关于random forest 的分类和回归代码,已试验,可以成功运行
2021-10-16 11:29:35 341KB random forest
1
银行营销数据分析 要求 Python 2.7 脾气暴躁> = 1.14.2 Matplotlib> = 2.2.0 熊猫> = 0.22.0 Scikit-Learn> = 0.19.1 描述 银行营销数据集是从葡萄牙语的一家银行机构的直接营销活动中收集的。 营销活动可以理解为打给客户的电话,说服他们接受他们向其银行存入定期存款。 每次通话后,他们被记为否-是客户未存入保证金,是-是通话中接受接受存入的客户。 该项目的目的是根据客户的信息预测应召客户是否愿意存入定期存款。 该项目考虑的银行营销数据集仅占全部可用数据集的一小部分(10%)。 该数据集包含约4119行数据,其中包含19个功能部件和1列Class信息。 数据集的主要问题是: 需要进行预处理以填充数据集中的未知值 需要进行预处理以决定分类数据和连续数据的使用 数据是类别不平衡的(与类别0的数量(否)相比,类别1
2021-10-14 23:03:03 4.92MB python random-forest pandas-dataframe histogram
1
rrcf :evergreen_tree: :evergreen_tree: :evergreen_tree: 用于异常检测的鲁棒随机砍伐森林算法的实现 。 S.Guha,N.Mishra,G.Roy和O.Schrijvers,基于流的鲁棒随机采伐森林异常检测,在2016年第33届国际机器学习国际会议论文集(纽约,纽约,第2712-2721页) )。 关于 鲁棒随机砍伐森林(RRCF)算法是一种用于检测流数据中异常值的集成方法。 RRCF提供了许多竞争性异常检测算法所缺乏的许多功能。 具体而言,RRCF: 设计用于处理流数据。 在高维数据上表现良好。 减少不相关尺寸的影响。 优雅地处理可能会掩盖异常值的重复项和几乎重复项。 具有异常评分算法,具有清晰的基本统计含义。 该存储库提供了RRCF算法及其核心数据结构的开源实现,目的是促进实验并实现RRCF算法的未来扩展。 文献资料 在阅读文档 。 安装 使用pip通过pypi安装rrcf : $ pip i
2021-10-14 19:38:15 834KB python machine-learning tree random-forest
1
Cell automaton_Forest fires(元胞自动机-森林火灾):C++代码实现模拟森林着火。
2021-10-14 14:02:37 2KB 元胞自动机 C++ 森林火灾 算法
1
Breast-Cancer-Scikitlearn:使用Scikitlearn进行机器学习的简单教程
2021-10-13 18:22:50 281KB python random-forest svm sklearn
1