保留身份的条件生成对抗网络的面Kong老化 该存储库是的人的官方开放源代码,由宗宗望, ,罗维新和高 。 它是在tensorflow中实现的。 请按照说明运行代码。 ![scalars_framework] 1.安装 安装python的第3个程序包依赖项(在requirements.txt中列出) tensorflow-gpu==1.4.1 scipy==1.0.0 opencv-python==3.3.0.10 numpy==1.11.0 Pillow==5.1.0 pip install -r requirements.txt 其他图书馆 CUDA 8.0 Cudnn 6.0 2.下载数据集 我们使用跨年龄名人数据集进行培训和评估。 有关此数据集的更多详细信息,请参考( )。 经过面部检测,对齐和中心裁剪后,我们将图像分为5个年龄段:11-20、21-30、31
2021-12-07 16:05:15 31.21MB Python
1
语音情感分析器:神经网络模型能够从音频语音中检测出五种不同的男女情感。 (深度学习,NLP,Python)
1
官方离线安装包,亲测可用
2021-12-07 10:01:56 69KB rpm
吴恩达deeplearning课后作业Course_1代码.zip
2021-12-06 21:06:11 10KB deep learning
1
吴恩达DeepLearning课后作业Course_2代码.zip
2021-12-06 21:06:11 411KB deep learning
1
复制粘贴 复制粘贴增强的非官方实现。 构建增强功能可轻松与白蛋白整合。 为COCO提供了创建兼容火炬视觉数据集的示例。 图像,遮罩和边框的核心功能已完成; 关键点尚不支持。 通常,您可以像使用其他任何专辑增强功能一样使用CopyPaste增强功能。 注意一些用法限制。 使用说明 BboxParams不能具有label_fields。 要将类标签附加到边界框,请将其直接附加到边界框坐标。 (即(x1,y1,x2,y2,class_id))。 传递给CopyPaste增强的边界框还必须在“遮罩”列表中包含相应遮罩的索引。 (即边界框看起来像(x1,y1,x2,y2,class_id,mask_index))。 举了一个COCO的例子。 CopyPaste增强功能期望使用6个关键字参数,而不是3个: output = transforms ( image = image , masks
1
打包的YOLOv5对象检测器 您最终可以使用安装并轻松集成到您的项目中。 概述 该软件包是最新版本的的最新版本。 安装 使用pip安装yolov5 (for Python >=3.7) : pip install yolov5 使用pip安装yolov5 (for Python 3.6) : pip install "numpy>=1.18.5,=3.2.2,<4" pip install yolov5 基本用法 from PIL import Image from yolov5 import YOLOv5 # set model params model_path = "yolov5/weights/yolov5s.pt" # it automatically downloads yolov5s model to given path dev
1
要求 python - 3.7 keras - 2.4.3 tensorflow - 2.2.0 项目1:车杆 介绍 在此任务中,我们必须在购物车顶部平衡一根杆。 动作空间的数量为2。此处动作空间是离散的。 0向左移动购物车 1向右移动购物车 我在大约60集中使用DQN解决了这个问题。 以下是得分与情节的关系图。 项目2:山地车 介绍 在此任务中,我们必须教车达到山顶处的目标位置。 操作空间的数量为3。在这种环境下,操作空间是离散的。 0向左移动汽车 1什么也不做 2向右移动汽车 我在大约15集中使用DQN解决了此问题。 以下是得分与情节的关系图。 项目3:Pendulam 介绍 在此任务中,我们必须平衡摆锤的颠倒状态。 作用空间的数量为1,这是施加在关节上的扭矩。 动作空间在这里是连续的。 0扭矩[-2,2] 我在大约100集中使用DDPG解决了这个问题。 以下是得分与情节的
1
简介-自然语言处理 汉良作者何晗老师的新书《自然语言处理入门》详细的笔记!业界良心之作,书中不是枯燥无味的公式罗列,甚至用白话分解的通俗易懂的算法模型。从基本概念出发,逐步介绍中文分词,词性标注,命名实体识别,信息删除,文本聚类,文本分类,句法分析这几个热门问题的算法原理与工程实现。 本项目初步帮助更多同路人能够快速的掌握NLP的专业知识,理清知识要点,在工作中发挥作用的作用。以书本为主,记录本人学习此书的心路历程,总结和笔记。 机器学习与深度学习请转至本人项目: HanLP项目: 思维导图,请关注AIArea公众号并回复:NLP思维导图,即能下载高清大图。 目录 章节
2021-12-06 11:58:27 6.96MB nlp ai deep-learning mechine-learing
1
多类别文字分类 在Tensorflow中实现四个神经网络,以解决多类文本分类问题。 楷模 LSTM分类器。 参见rnn_classifier.py 双向LSTM分类器。 参见rnn_classifier.py CNN分类器。 参见cnn_classifier.py。 参考: 。 C-LSTM分类器。 请参阅clstm_classifier.py。 参考:。 资料格式 训练数据应存储在csv文件中。 文件的第一行应为[“ label”,“ content”]或[“ content”,“ label”]。 要求 Python 3.5或3.6 Tensorflow> = 1.4.0 脾气暴躁的 火车 运行train.py训练模型。 参数: python train.py --help optional arguments: -h, --help show
2021-12-05 15:41:29 7.46MB nlp deep-learning text-classification cnn-lstm
1