Application of FPGA to real-time machine learning - hardware reservoir computers and software image processing [Antonik, P.][Springer,][2018] This book lies at the interface of machine learning – a subfield of computer science that develops algorithms for challenging tasks such as shape or image recognition, where traditional algorithms fail – and photonics – the physical science of light, which underlies many of the optical communications technologies used in our information society. It provides a thorough introduction to reservoir computing and field-programmable gate arrays (FPGAs). Recently, photonic implementations of reservoir computing (a machine learning algorithm based on artificial neural networks) have made a breakthrough in optical computing possible. In this book, the author pushes the performance of these systems significantly beyond what was achieved before. By interfacing a photonic reservoir computer with a high-speed electronic device (an FPGA), the author successfully interacts with the reservoir computer in real time, allowing him to considerably expand its capabilities and range of possible applications. Furthermore, the author draws on his expertise in machine learning and FPGA programming to make progress on a very different problem, namely the real-time image analysis of optical coherence tomography for atherosclerotic arteries.
2023-04-01 23:22:04 3.69MB FPGA
1
Interpretable Machine Learning by Christoph Molnar .pdf
2023-03-31 21:30:48 36.43MB
1
CSDN上Pattern Recognition and Machine Learning_PRML这本书下载的积分要太高,所以干脆自己上传一个好了,打开网盘链接可以看到有没有失效,txt文档中有密码,祝大家科研顺利!https://pan.baidu.com/s/1Rlx_2pmnwTSQZ8zF3urRrA
2023-03-20 13:59:15 64B ML
1
Hands-On Machine Learning with Scikit-Learn and TensorFlow 英文 高清pdf 网络搜集,值得一读
2023-03-19 12:15:19 43.29MB Machine Learning TensorFlow 英文
1
MapReduce-机器学习 一些机器学习算法的 Map-Reduce 实现
2023-03-16 12:37:40 36KB Python
1
DoubleML-Python中的双机学习 Python软件包DoubleML提供了的双重/无偏机器学习框架的 。 它建立在(Pedregosa等,2011)。 请注意,Python软件包是与基于的R twin一起开发的。 R包也可以在和 。 文档和维护 文档和网站: : DoubleML当前由和维护。 可以将错误报告给问题跟踪器,为 。 主要特点 双重/无偏机器学习 部分线性回归模型(PLR) 部分线性IV回归模型(PLIV) 互动回归模型(IRM) 交互式IV回归模型(IIVM) DoubleML的面向对象的实现非常灵活。 模型类DoubleMLPLR , Doub
2023-03-15 23:00:41 207KB python data-science machine-learning statistics
1
DeepSpeech:DeepSpeech是一种开源嵌入式(离线,设备上的)语音到文本引擎,可以在从Raspberry Pi 4到大功率GPU服务器的各种设备上实时运行
2023-03-15 21:18:57 6.19MB machine-learning embedded deep-learning offline
1
Algebra, Topology, Differential Calculus, and Optimization TheoryFor Computer Science and Machine LearningJean Gallier and Jocelyn Quaintance Department of Computer and Information ScienceUniversity of Pennsylvania Philadelphia, PA 19104, USA e-mail: jean@cis.upenn.educ:copyright: Jean GallierAugust 2, 20192ContentsContents 31 Introduction 172 Groups, Rings, and Fields 19 2.1 Groups, Subgroups, Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Cyclic Groups . . . . . . . . . .
2023-03-15 20:47:53 19.85MB Papers Specs Decks Manuals
1
对抗图书馆 该库包含与PyTorch中实施的对抗性攻击有关的各种资源。 它针对寻求最新攻击实施方案的研究人员。 编写代码是为了最大程度地提高效率(例如,通过偏爱PyTorch的底层函数),同时保持简单性(例如,避免抽象)。 因此,大多数库(尤其是攻击)都是使用纯函数实现的(只要有可能)。 在着重于攻击的同时,该库还提供了一些与对抗性攻击有关的实用程序:距离(SSIM,CIEDE2000,LPIPS),可见回调,预测,损失和辅助功能。 最值得注意的是,来自utils/attack_utils.py的功能run_attack对具有给定输入和标签且具有固定批处理大小的模型进行了攻击,并报告了与复杂性相关的指标(运行时和向前/向后传播)。 依存关系 该库的目标是使用最新版本的PyTorch进行更新,以便可以定期更新依赖项(可能会导致重大更改)。 pytorch> = 1.7.0 火炬视觉>
1
Hands-On Machine Learning with Scikit-Learn and TensorFlow.zip
2023-03-14 21:00:29 42.59MB Machine Learning
1