Hands-On Machine Learning with Scikit-Learn and TensorFlow + 源码
2023-06-05 17:44:36 19.2MB Machine Learning Scikit-Learn TensorFlow
1
ml_with_django ml_with_django是一个开源模板,用于通过django应用程序提供机器学习模型。 该项目还包含一个基于django-admin的几乎可用于生产环境的管理仪表板。 您仅需几个步骤,即可使用此模板非常快速地开发基于django的ml应用程序。 该项目使用tensorflow 1.8版本,该版本仍然依赖于旧api版本。 更新到当前的tensorflow版本可能会产生不兼容的冲突。 本文件的内容 截屏 图像管理的管理员后端 日志管理 用户和组权限的屏幕截图 设定(TBD) 移至设置。 预安装 python 3.6.5 点子 virtualenv或virtualwrapper 设置管理员用户并开始使用 默认情况下,Django将创建一个本地sqllite.db并将该数据库用于本地开发。 创建一个超级用户帐户,然后启动应用程序: $ m
2023-05-15 20:30:39 13.55MB machine-learning django object-detection JavaScript
1
Encyclopedia of Machine Learning and Data Mining(2nd) 英文无水印pdf 第2版 pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
2023-05-15 15:47:50 30.15MB Encyclopedia Machine Learning Data
1
图像去模糊 一张照片捕捉到一个难忘的时刻却后来才发现它模糊不清,这真是令人失望。 图像去模糊也可以用作其他应用程序的预处理步骤。 该项目使您可以对图像进行模糊处理。 用法 预先训练的权重和使用的模型存储在存储库中。 您可以直接加载它们并运行Demo.ipynb中显示的去模糊处理 如果要从头训练模型,则训练脚本位于deblur.py中 模型 使用了具有3个卷积层的CNN模型。 训练集包括4000张大小为96x96的模糊图像,目标集由相应的清晰图像组成。 实际的去模糊是在尺寸为32x32的较小色块上学习的。 在预测期间,可以一次从32x32的色块中预测出清晰的色块。 样品 水果: 伦娜:
1
TensorFlow中的深度学习模型 该存储库包含使用实现几种深度学习模型的jupyter笔记本。 每个笔记本均包含有关每种型号的详细说明,希望可以简化所有步骤。 笔记本在Python 3.6,Tensorflow 1.8中运行 楷模:
2023-05-08 23:00:21 270KB python machine-learning deep-learning notebook
1
超带宽 改编自使用Hyperband调整超参数的代码。 defs/ - functions and search space definitions for various classifiers defs_regression/ - the same for regression models common_defs.py - imports and definitions shared by defs files hyperband.py - from hyperband import Hyperband load_data.py - classification defs import data from this file load_data_regression.py - regression defs import data from this file main.py - a complete example for classification main_regression.py - the same, for regression main_simple.py -
1
一般的 该存储库提供了代码和示例,用于生成最接近的反事实说明和最少的后续干预措施。 支持以下论文: (4c691b4 @ ) (9387e6c @ ) 代码先决条件 第一的, $ git clone https://github.com/amirhk/mace.git $ pip install virtualenv $ cd mace $ virtualenv -p python3 _venv $ source _venv/bin/activate $ pip install -r pip_requirements.txt $ pysmt-install --z3 --confirm-agreement 然后参考 $ python batchTest.py --help 并运行如下 $ python batchTest.py -d * dataset * -m * mod
1
PyTextGCN 对TextGCN的重新实现。 此实现使用Cython进行文本到图形的转换,因此速度相当快。 图形和GCN基于库。 要求 该项目的构建具有: 的Python 3.8.5 Cython 0.29.21 CUDA 10.2(GPU支持可选) scikit学习0.23.2 pytorch 1.7.0 火炬几何1.6.3 海湾合作委员会9.3.0 nltk 3.5 scipy 1.5.2 至少Text2Graph模块也应该与这些库的其他版本一起使用。 安装 cython编译可以从项目的根目录执行: cd textgcn/lib/clib && python setup.py build_ext --inplace 用法 要从称为X的字符串列表(每个字符串包含一个文档的文本)中计算出图形,请创建名为y的标签列表以及测试索引test_idx的列表,只需运行:
1
机器学习的时间序列预测 一组预测时间序列的不同机器学习模型,具体来说是给定货币图表和目标的市场价格。 要求 必需的依赖项: numpy 。 其他依赖项是可选的,但是为了使最终模型更多样化,建议安装以下软件包: tensorflow , xgboost 。 经过python版本测试:2.7.14、3.6.0。 取得资料 有一个内置的数据提供程序,可以从获取数据。 目前,所有模型都已通过加密货币图表进行了测试。 提取的数据格式是标准安全性:日期,最高,最低,打开,关闭,交易量,报价量,weightedAverage。 但是模型与特定的时间序列特征无关,并且可以使用这些特征的子集或超集进行训练。 要获取数据, 从根目录运行脚本: # Fetches the default tickers: BTC_ETH, BTC_LTC, BTC_XRP, BTC_ZEC for all time periods. $ ./run_fetch.py 默认情况下,将提取Poloniex中所有可用时间段(天,4h,2h,30m,15m,5m)的数据,并将其存储在_data目录中。 您可以通过命令行参
2023-04-21 00:06:30 101KB python machine-learning statistics deep-learning
1
神经元 并行神经网络微框架。 在阅读论文。 特征 任意形状和大小的密集、完全连接的神经网络 具有均方误差成本函数的反向传播 基于数据的并行性 几个激活函数 支持 32、64 和 128 位浮点数 入门 获取代码: git clone https://github.com/modern-fortran/neural-fortran cd neural-fortran 依赖项: Fortran 2018 兼容编译器 OpenCoarrays(可选,用于并行执行,仅限 GFortran) BLAS、MKL(可选) 使用 fpm 构建 以串行模式构建 fpm build --flag "-cpp -O3 -ffast-math fcoarray=single" 以并行模式构建 如果您使用 GFortran 并希望并行运行神经 fortran,则必须首先安装OpenCoarray
2023-04-19 17:15:26 16.22MB machine-learning neural-network fortran parallel
1