超带宽 改编自使用Hyperband调整超参数的代码。 defs/ - functions and search space definitions for various classifiers defs_regression/ - the same for regression models common_defs.py - imports and definitions shared by defs files hyperband.py - from hyperband import Hyperband load_data.py - classification defs import data from this file load_data_regression.py - regression defs import data from this file main.py - a complete example for classification main_regression.py - the same, for regression main_simple.py -
1
mlrMBO:R中的贝叶斯优化和基于模型的优化的工具箱
1
BOML-用于元学习的Python双层优化库 BOML是一个模块化的优化库,它将几种ML算法统一为一个通用的双层优化框架。它提供了用于实现流行的双层优化算法的接口,因此您可以快速构建自己的元学习神经网络并测试其性能。 ReadMe.md包含简短介绍,以在少数镜头分类字段中实现基于元初始化和基于元功能的方法。除已提出的算法外,还可以使用较低级别策略和较高级别策略的各种组合。 元学习 当通过学习具有良好泛化能力的初始化来面对传入的新任务时,元学习效果很好。它甚至在提供少量培训数据的情况下也具有良好的性能,从而催生了针对不同应用的各种解决方案,例如少发性学习问题。 我们提出了一个通用的双层优化范例,以统一不同类型的元学习方法,其数学形式可以总结如下: 通用优化例程 在这里,我们在图中说明了一般的优化过程和分层构建的策略,可以在以下示例中快速实现它们。 文献资料 有关基本功能和构建过程的更多详
1
CMA-ES 轻量级协方差矩阵适应进化策略(CMA-ES)[1]的实现。 消息 2021/03/10 在Optuna中型博客上发布。 本文介绍了何时以及如何充分利用CMA-ES采样器。 请检查一下! 2021/02/02由该库的维护者撰写的论文在AAAI 2021上被接受 :party_popper: 2020/07/29 Optuna的内置CMA-ES采样器在后台使用此库,已在Optuna v2.0中稳定。 请查看。 安装 支持的Python版本是3.6或更高版本。 $ pip install cmaes 或者,您可以通过安装。 $ conda install -c conda-forge cmaes 用法 该库提供了一种“问与答”风格的界面。 import numpy as np from cmaes import CMA def quadratic ( x1 , x2 ): return
1
超参数优化 实现不同的超参数优化方法
2021-10-13 22:52:32 19.44MB JupyterNotebook
1
贝叶斯优化 Hyperband 超参数优化 实施 要求 - numpy - scipy - statsmodels - dask - torch (example) 安装 pip3 install bohb-hpo 用法 from bohb import BOHB import bohb . configspace as cs def objective ( step , alpha , beta ): return 1 / ( alpha * step + 0.1 ) + beta def evaluate ( params , n_iterations ): loss = 0.0 for i in range ( int ( n_iterations )): loss += objective ( ** params , step = i )
1
自动集群 autocluster是用于执行集群任务的自动化机器学习(AutoML)工具箱。 报告和演示幻灯片可在和找到。 先决条件 Python 3.5或更高版本 也可以使用Linux OS或 如何开始? 首先,安装 : sudo apt-get install build-essential swig conda install gxx_linux-64 gcc_linux-64 swig pip install smac==0.8.0 pip install autocluster 这个怎么运作? autocluster自动优化集群问题的配置。 通过配置,我们的意思是 降维算法的选择 聚类模型的选择 降维算法的超参数的设置 聚类模型的超参数的设置 autocluster提供了3种不同的方法来优化配置(复杂度不断提高): 随机优化 贝叶斯优化 贝叶斯优化+元学习(warm
1
NeuralNetStudio:开源递归神经网络程序(RNN)。 [MATLAB]
1