一般信息 支持向量机(SVM)和相关的基于内核的学习算法是一类知名的机器学习算法,用于非参数分类和回归。 liquidSVM是SVM的实现,其主要功能是: 完全集成的超参数选择, 无论大小数据集,其速度都极高, , , , 和绑定, 为专家提供充分的灵活性,以及 包括各种不同的学习场景: 多类别分类,ROC和Neyman-Pearson学习, 最小二乘,分位数和预期回归。 如有疑问和意见,请通过与我们联系。 您也可以在此处要求注册到我们的邮件列表。 liquidSVM已根据许可。 如果您需要其他许可证,请与联系。 命令行界面 命令行版本的。 Linux / OS X的终
2022-06-05 16:05:49 5.28MB python c-plus-plus machine-learning r
1
Nyc-Taxi-Kaggle-挑战 目标 Kaggle竞赛预测纽约出租车的行驶时间。 该项目的报告在capstone.pdf。 (在这个项目中,我提供了许多链接,如果您是初学者,可以通过这些链接来弄清楚您的概念,如果不理解的话,可以通过project和readme中提供的链接和pdf来了解。) 问题陈述 在本报告中,我们使用来自纽约市出租车和高级轿车委员会的数据来考察Kaggle竞赛,该竞赛要求竞争对手预测纽约市出租车旅行的总行驶时间(trip_duration)。 Kaggle提供的数据是作为CSV文件提供的结构化数据。 CSV文件中的数据包括多种格式:时间戳,文本和数字数据。 这是回归分析,因为输出(总行驶时间)是数字。 我将使用几种机器学习方法来完成预测任务,这些方法是线性回归,k最近邻回归,随机森林和XGBoost。 将使用均方根对数误差对模型进行评估。 总览 我使用Jupyter_Notebook在dekstop上执行此项目,并且在使用python的远程服务器上也无需使用Jupyter_notebook来执行。 软件和库 Python 3 Scikit-learn:Pyt
2022-06-05 16:04:07 23.28MB python machine-learning deep-learning random-forest
1
matlab吴恩达代码 Andrew-Ng-Machine-learning-ex 吴恩达Coursera机器学习编程练习满分答案,可供参考 使用matlab完成,部分代码注释待完善,哪天有空了加 Exercise 1 Linear Regression Exercise 2 Logistic Regression Exercise 3 Multi-class Classification and Neural Networks Exercise 4 Neural Network Learning Exercise 5 Regularized Linear Regression and Bias/Variance Exercise 6 Support Vector Machines Exercise 7 K-Means Clustering and PCA Exercise 8 Anomaly Detection and Recommender Systems
2022-06-03 14:21:44 28.95MB 系统开源
1
大小符识别
2022-06-02 21:05:15 12KB deep learning
1
Genetic algorithms in search, optimization, and machine learning 遗传学算法(仅前50页)
2022-06-02 12:01:11 1.34MB Genetic algorithms in search
1
深度学习面试书:深度学习面试宝典(含数学,机器学习,深度学习,计算机视觉,自然语言处理和SLAM等方向)
1
the elements of statistical learning 第二版高清&第一版中文影印
2022-06-01 20:07:10 105.44MB 统计学 基础 统计学基础 statistical
1
对广大的程序员学习量子计算和量子机器学习的很好教材!
2022-06-01 14:07:51 1.74MB 机器学习 文档资料 人工智能 量子计算
强化学习对抗攻击和防御 DQN政策 战略定时攻击 统一攻击 对抗训练 该存储库为深度强化学习代理实现了一些经典的对抗攻击方法,包括( drl_attacks/ ): 统一攻击[]。 战略定时攻击[]。 临界点攻击[]。 关键策略攻击。 对抗性政策攻击[]。 也可以使用以下RL防御方法( drl_defenses/ ): 对抗训练[]。 还提供了一些图像防御方法( img_defenses/ ): JPEG转换[]。 位压缩[ ]。 图像平滑[]。 该项目大部分基于基于的RL框架守。 图片敌对攻击和防御都与实施 ,也是基于Pytorch。 相反,A2C和PPO策略基于pytorch-a2c-ppo-acktr-gail ,DQN使用了天守实现。 任何图像对抗攻击都与此项目兼容。 可用型号 它还可以在文件夹log找到适用于不同任务的训练有素的模型。 下表报告了三种
1
很棒的决策树研究论文 精选的决策,分类和回归树研究论文清单,包括来自以下会议的实现: 机器学习 计算机视觉 自然语言处理 数据 人工智能 关于,,,和论文的类似集合以及实现。 2020年 DTCA:可解释的索赔验证基于决策树的共同注意网络(ACL 2020) 吴连伟,袁Yuan,赵永强,梁浩,安布琳·纳齐尔 隐私保护梯度提升决策树(AAAI 2020) 李勤彬,吴兆敏,温则宜,何炳生 实用联合梯度提升决策树(AAAI 2020) 李勤彬,温则宜,何炳生 最优决策树的有效推断(AAAI 2020) 弗洛伦特·阿韦拉内达(Florent Avellaneda) 使用缓存分支和边界搜索学习最佳决策树(AAAI 2020) 盖尔·阿格林(Gael Aglin),齐格弗里德·尼森(Pierre) 决策树集合分类器的抽象解释(AAAI 2020) 弗朗切斯科·朗佐托(Marco Zanella) (多任务)梯度增强树的可扩展功能选择(AISTATS 2020) Cuize Han,Nikhil Rao,Daria Sorokina,Karthik Subbia
1