matlab sift特征提取代码 Scene-Recognition-with-Bag-of-Words(基于词袋模型的场景识别) 1 实验目的 使用了两种特征提取算法(Tiny images feature和Bag of sift)及两种分类算法(k-Nearest Neighbor和SVM)进行场景识别。 Tiny + Nearest Neighbor Tiny + SVM Bags of SIFT + Nearest Neighbor Bags of SIFT+SVM 2 代码结构与功能 主函数:project3.m Tiny images feature 特征提取:get_tiny_images.m Bag of SIFT特征提取: build_vocabulary.m 实现词袋中标准词汇的选择 get_bags_of_sifts.m 实现词袋模型的构建 k-Nearest Neighbor分类器:nearest_neighbor_classify.m SVM分类器:svm_classify.m 获取图片路径:get_image_paths.m 将结果呈现成webpage形式
2021-06-27 20:54:39 82.35MB 系统开源
1
该数据集包含来自世界各地自然场景的约25k张图像。任务是确定可以将图像分类为哪种场景。 test_WyRytb0.csv train.csv Scene Classification_datasets.txt Scene Classification_datasets.zip
2021-06-18 16:11:45 357.57MB 数据集
1
会自动递归处理依赖的纹理和材质
2021-06-07 18:05:19 16.41MB fbx unity scene
1
场景切换效果;工程文件。
2021-05-28 16:21:57 18.05MB scene 场景切换效果 unity
1
Unity 太空资源 包含太阳,小行星,太空飞船射击等功能等,欢迎下载学习
2021-05-27 17:02:36 102B Unity 太空资源 SpaceforUnity Space
1
svm算法手写matlab代码kaggle-场景分类(排名第一的提交) 从头开始实施k-means算法,并在数字数据上对其进行测试。 此外,使用它来学习用于场景表示的视觉词汇,然后将带有RBF内核的LibSVM用于流行的电视连续剧-大爆炸理论中的场景分类 要了解有关比赛的更多信息,请点击以下链接: 数据: 有两个带有数据的文件。 第一个digit.txt包含来自包含手写数字的图像的157个像素(原始785的子集)的1000个观测值。 第二个文件labels.txt包含真实数字标签(1、3、5或7)。 请注意,数字没有ID。 请假设第一行是ID 1,第二行是ID 2,依此类推。 标签与数字文件相对应,因此labels.txt的第一行是digit.txt第一行中数字的标签。 培训和测试图像将包含在bigbangtheory子目录中(由于限制,我没有在此处上传这些图像,如果您需要这些图像,请随时给我发送电子邮件)。 培训图像ID和标签在train.mat中给出。 该文件包含两个变量:imgIds和lbs。 imgIds是列向量,每行在训练集中都有一个图像名称。 lbs是表示带有相应索引的图像
2021-05-25 18:03:33 86KB 系统开源
1
本次实验是基于词袋模型的图像分类技术,利用提取的局部区域的分布对图像进行识别。在图像分类中,词袋模型算法需要通过监督或非监督的学习来获得视觉词典。基于词袋模型的图像分类算法一般分为四步,首先对图像进行局部特征向量的提取(本次实验采用HOG);其次利用上一步得到的特征向量集,抽取其中有代表性的向量,作为单词,形成视觉词典(本实验采用K-means聚类算法);然后对图像进行视觉单词的统计,一般判断图像的局部区域和某一单词的相似性是否超过某一阈值,这样即可将图像表示成单词的分布,即完成了图像的表示;最后设计并训练分类器,利用图像中单词的分布进行图像分类(本实验采用KNN分类算法和线性SVM多分类算法)。
2021-05-20 17:38:01 90.19MB 计算机视觉 高级计算机视觉
1
全网唯一使用( Scene Builder 设计 UI)的JavaFX 8 教程,非常实用的一个教程案例,比那个《翻译官方文档》的教程要系统(那个文档我也有),基本根据教程练一边就基本会JavaFX开发了!
2021-05-19 15:40:03 23.85MB JavaFX 8(Scene Builder)
1
双重注意力网络:中科院自动化所提出新的自然场景图像分割框架(附源码)。本文提出了一个新的自然场景图像分割框架,以往的方法更为灵活、有效,在三个场景分割数据集Cityscapes、PASCAL Context 和 COCO Stuff上取得了当前最佳分割性能。
2021-05-03 18:44:14 21.02MB 场景分割 DANet
1
使用高频照明快速分离场景的直接分量和全局分量
2021-04-30 22:05:52 1003KB 二值化 单目格雷码结构光
1