類神經網路經典本 Neural Networks and Learning Machines Third Edition 3rd 英文版
2021-11-13 15:53:20 23.09MB Neural Neural
1
dbn matlab代码神经网络 神经网络实施MATLAB(RBM,DBN,DNN) 在该项目中,从RBM结构实现了神经网络: 受限玻尔兹曼机(RBM)是一种生成型随机人工神经网络,可以学习其输入集上的概率分布。 然后,实现一个DBN: 在机器学习中,深度信念网络(DBN)是一个生成的图形模型,或者是一类深度神经网络,由多层潜在变量(“隐藏单元”)组成,各层之间存在连接,但内部各层之间没有连接每层。 最后,从前两个实现中实现了深度神经网络。 MNIST数据集用于测试DNN。 MATLAB代码从“脚本”生成CSV,这些脚本用于使用R绘制一些精美的图。 该代码分为3部分: 第1部分:RBM学习->从RBM(字母数字)生成图像; 第2部分:DBN学习->从DBN(字母数字)生成图像; 第3部分:DNN学习(预训练)->比较预训练DNN和随机初始化DNN的错误率。
2021-11-11 21:01:56 11.22MB 系统开源
1
图 3.10 安装后的显示的驱动信息 安装完成后即可启动 EWARM 环境。将 LM LINK 与目标开发板的 JTAG 接口插座相连, 接通目标开发板电源,然后按第 4 章中的步骤执行后面的操作。 3.4 安装流明诺瑞驱动库 在安装好 EWARM 集成开发环境后,就可在该环境下新建工程了。但在新建工程之前, 为了使以后的工程更便于管理、工程中的设置更加简单化,在这里就需要一些准备工作,将 某些文件拷贝到指定路径下,具体的操作方式将在随后介绍。至于为什么要这样做,在工程 的设置时就会体会出其优越性。 注意:本文是以 32K 的试用版为例作讲解。如果用正式版可以参照本文进行设置。 3.4.1 下载最新库文件 从流明诺瑞官方网站 http://www.luminarymicro.com 下载最新的驱动库文件。假设保存 于“D:\”,如图 3.11 所示。 图 3.11 驱动库文件存放目录
2021-11-10 21:36:06 8.69MB 电脑鼠
1
简单人工神经网络(ANN) 关于案例研究 在此业务案例研究中,我们预测了银行客户的流失率。 为了了解银行的客户,我们将使用一种深度学习技术,即人工神经网络(ANN)。从数百万的客户中,我们随机选择了1万个客户。 我们将使用客户的特征来确定他/她离开银行的可能性。 为了了解银行的客户,我们将使用一种深度学习技术,即人工神经网络(ANN)。 此外,我们将使用流行的Python库(例如Tensorflow,Keras)和机器学习技术(例如Adam Optimizer)来训练ANN模型并预测客户流失率。 数据:客户数据存储在: 论文:ANN案例研究论文: 研究论文 代码:Artificial_Neural_Network_Case_Study.py SAMPLE_OUTPUT = ANN_Case_Study_Sample_Output_1.png SAMPLE_OUTPUT = ANN_C
2021-11-10 20:14:17 2.57MB data-science machine-learning deep-learning python3
1
描述 该项目旨在消除源自手持摄像机运动或抖动的运动模糊。 它旨在盲目工作,即不需要模糊知识。 使用卷积神经网络估计运动模糊,然后将其用于校准反卷积算法。 该项目包括两个不同的部分: -图像处理部分,包括反卷积算法和正向模型。 -使用神经网络的模糊估计部分。 有关某些视觉见解,请参见 。 该库使用Python3编码。 无论是在图像处理(复杂模糊的建模)还是在模糊估计方面,其贡献都倍受欢迎。 消息 从2020年5月开始,该项目重新启动! 我们从tensorflow转到pytorch。 我们将把运动模糊模型扩展到比简单的线性运动更复杂的运动。 我们还将解决空间变异情况。 我们计划扩展到电视去模糊。 进步 截至目前(2020年5月),我们支持使用Wiener滤波器对线性模糊进行模糊处理。 安装 在您喜欢的conda环境中,键入: pip install -e . 为了进行开发,请按
1
深度微词典学习和编码网络(WACV 2019) | | 引文 如果您使用此代码进行研究,请引用我们的论文。 @article{tang2020dictionary, title={When Dictionary Learning Meets Deep Learning: Deep Dictionary Learning and Coding Network for Image Recognition With Limited Data.}, author={Tang, Hao and Liu, Hong and Xiao, Wei and Sebe, Nicu}, journal={IEEE TNNLS}, year={2020} } @inproceedings{tang2019multichannel, title={Deep Micro-Dictionary
1
CS291K 使用CNN-LSTM组合神经网络模型对Twitter数据进行情感分析 论文: : 博客文章: : 动机 该项目旨在扩展我们以前使用简单的前馈神经网络(位于此处: & )进行的情绪分析工作。 相反,我们希望尝试使用Tensorflow构建组合的CNN-LSTM神经网络模型,以对Twitter数据进行情感分析。 依存关系 sudo -H pip install -r requirements.txt 运行代码 在train.py上,更改变量MODEL_TO_RUN = {0或1} 0 = CNN-LSTM 1 = LSTM-CNN 随时更改其他变量(batch_
1
TensorFlow示例模型 基于TensorFlow的几种机器学习模型的实现(前三个-Logistic Regresion,MLP和CNN受启发)。 文件夹包含以下内容的简单实现: (带EM) 文件夹包含通过期望最大化算法(具有对角协方差,完全协方差,基于梯度等)训练的高斯混合模型实现的详细版本。 文件夹包含将GMM实现分解为一组连贯的类的初始尝试。
2021-11-09 17:23:23 532KB machine-learning neural-network tensorflow cnn
1
路径GAN 基于采样路径规划启发式生成对抗网络的Pytorch实现 表中的内容 结构 PathGAN的总体结构由两部分组成: RRT *搜索算法和 产生性的对抗性网络,用于产生有希望的区域 搜索算法 RRT*算法: 比较RRT*和Heuristic RRT* : GAN架构 GAN整体架构: GAN架构的详细信息: 数据集 数据集 训练 结果 执照 该项目在麻省理工学院获得许可。 链接 基于生成式对抗网络的启发式算法,用于基于采样的路径规划(arXiv文章) GAN路径查找器(arXiv文章)
1
傅立叶神经算子 该存储库包含该论文的代码: 在这项工作中,我们通过直接在傅立叶空间中对积分内核进行参数化,从而制定了一种新的神经元运算符,从而实现了高效而富有表现力的体系结构。我们对Burgers方程,Darcy流和Navier-Stokes方程(包括湍流状态)进行实验。与现有的神经网络方法相比,我们的傅里叶神经算子显示了最先进的性能,并且与传统的PDE求解器相比,它的速度提高了三个数量级。 它来自以前的作品: 要求 档案文件 代码采用简单脚本的形式。每个脚本应该是独立的并且可以直接运行。 fourier_1d.py是傅立叶神经算子1D的问题,如(与时间无关的)Burgers方程的第5.1节中所讨论的。 fourier_2d.py是傅立叶神经算子的2D问题如达西流在第5.2节中所讨论的。 fourier_2d_time.py是傅立叶神经算子的2D问题诸如在5.3节中讨论的Navier
2021-11-09 11:39:51 42KB partial-differential-equations Python
1