StellarGraph机器学习库 StellarGraph是一个Python库,用于在上进行机器学习。 目录 介绍 StellarGraph库提供了用于的最新算法,可轻松发现模式并回答有关图结构数据的问题。 它可以解决许多机器学习任务: 节点和边缘的表示学习,用于可视化和各种下游机器学习任务; 或边的; 整个图的分类; 链接预测; [8]。 图结构化数据将实体表示为节点(或顶点),并将它们之间的关系表示为边(或链接),并且可以将与其中任一实体关联的数据表示为属性。 例如,一个图可以包含人作为节点,而人与人之间的友谊则作为链接,以及诸如人的年龄和建立友谊的日期之类的数据。 StellarGraph支持多种图形的分析: 同构的(具有一种类型的节点和链接), 异构的(具有不止一种类型的节点和/或链接) 知识图(具有数千种边类型的极端异构图) 有或没有与节点关联的数据的图 边缘权重的图形 StellarGraph建立在及其Keras以及和。 因此,它是用户友好的,模块化的和可扩展的。 它可以与构建在这些基础之上的代码(例如标准Keras层和流畅地互操作,因此可以轻松扩展S
1
pyHSICLasso pyHSICLasso是希尔伯特·施密特(Hilbert Schmidt)独立标准套索(HSIC Lasso)的软件包,这是一种考虑了非线性输入和输出关系的黑匣子(非线性)特征选择方法。 HSIC Lasso可以看作是广泛使用的最小冗余最大相关性(mRMR)特征选择算法的凸变体。 HSIC套索的优势 可以有效地找到与非线性相关的特征。 可以找到非冗余功能。 可以获得全局最优的解决方案。 可以通过内核处理回归和分类问题。 功能选择 监督性特征选择的目标是找到负责预测输出值的输入特征子集。 通过使用它,您可以补充非线性输入和输出的依赖性,并且可以有效地计算高维问题的最优解。 通过针对数以千计的特征进行分类和回归的特征选择实验证明了其有效性。 在许多实际应用中,例如从微阵列数据中选择基因,文档分类和假体控制,在高维监督学习中寻找功能的子集是一个重要的问题。 安装
1
Latte:对流神经网络(CNN)推理引擎 Latte是用C ++编写的卷积神经网络(CNN)推理引擎,并使用AVX对操作进行矢量化。 该引擎可在Windows 10(32位和64位),Linux(内核= 4.12.10,gcc = 7.2.0)和macOS Sierra上运行。 当使用ATLUS构建caffe时,它具有与NVIDIA Caffe相同的精度和相同的推理速度。 该引擎具有自己的网络文件格式(.ahsf文件),因此我们提供了一些python脚本,可将NVIDIA Caffe的文件转换为我们自己的文件。 引擎支持以下层: 输入层。 卷积层。 ReLU。 完全连接的层。 Softmax。 最大池化层。 sigmod。 丹妮 如何使用python脚本: 我们的python脚本是使用Python 2.7.13制作的,需要以下软件包才能正常工作: Pycaffe(在构
1
随机傅立叶特征 该存储库提供Python模块rfflearn ,该模块是用于内核方法的随机傅立叶特征[1,2]的库,如支持向量机和高斯过程模型。 该模块的功能包括: 模块的接口非常接近 , 支持向量分类器和高斯进程回归器/分类器,提供CPU / GPU训练和推理, 与接口,可更轻松地进行超参数调整, 该存储库提供了,该显示RFF对于实际的机器学习任务很有用。 现在,此模块支持以下方法: 方法 CPU支援 GPU支持 典型相关分析 rfflearn.cpu.RFFCCA -- 高斯过程回归 rfflearn.cpu.RFFGPR rfflearn.gpu.RFFGPR 高斯过程分类 rfflearn.cpu.RFFGPC rfflearn.gpu.RFFGPC 主成分分析 rfflearn.cpu.RFFPCA rfflearn.gpu.RFFPCA 回归 rff
1
光谱聚类MATLAB 这是使用MATLAB进行频谱聚类的直观实现。 您可以轻松地完成使用Scikit,了解类似的API(光谱clutsering和其他人之间的比较是频谱聚类分析)。 有关频谱聚类的更多详细信息,您可以阅读以下参考文献或我们撰写。 (GPU加速版即将推出...) 入门 克隆此仓库并运行main.m以查看演示 使用细节 指定数据矩阵X和标签向量y,或获取内置数据 [X, y] = make_digits_dataset(300, true, false); 00examples, balance, no shuffle 在此项目中,我们提供6个数据集,包括3个玩具和3个
1
机器学习回归项目 使用的著名UCI数据集来预测葡萄酒质量。
1
深度SARSA和深度Q学习-LunarLander-v2 环境 在这个项目中,我试图从OpenAI体育馆解决Lunar Lander环境。这是一个二维环境,其目的是教导登月舱模块安全地着陆在固定在点(0,0)的着陆垫上。该代理具有3个推进器:一个在模块的底部,另一个在模块的每一侧。因此,代理人在每个时间步长都有4种可能的动作可供选择:发射每个推进器或什么也不做。给予坐席的奖励取决于许多因素:发射底部推进器会产生-0.3的奖励,而发射侧面推进器会产生-0.03的奖励。如果探员安全地降落在着陆垫上,将获得+100分的奖励,此外,与地面接触的模块的每条腿都将获得+10分的奖励。当代理程序着陆或崩溃时,已达到终端状态。为了检测终端状态,可以提取一个状态向量,该状态向量指示代理的位置,其当前速度和环境着陆标志,以指示腿是否与地面接触。还可以提取代表环境中代理图片的RGB阵列。最后,要解决此问题并确定
1
ist的matlab代码Python机器学习算法 用Python实现的流行和不流行的机器学习和数据处理算法参考:Sergios Theodoridis的“机器学习:贝叶斯优化观点” 除非脚本中另有说明,否则大多数算法都是由我自己根据参考文献中的理论从头开始实现的。 对于每种算法,将有一个笔记本测试文档和一个干净的python脚本。 该存储库中实现的算法包括: 1. Adaboost 2. Adaptive Projected Subgradient Method (APSM) 3. Convolutional Neural Network (CNN) 4. Compressed Sensing Matching Pursuit (CSMP) 5. Decision tree 6. Fuzzy C Means 7. Hierarchical and DBSCAN Clustering 8. Iterative Shrinkage/Thresholding (IST) algorithms 9. Kernal PCA 10. K-means family 11. KNN 12. Linea
2021-10-27 14:01:53 18.31MB 系统开源
1
Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work
2021-10-27 04:06:41 134.91MB 机器学习 2018
1
Master Machine Learning Algorithms.zip 掌握机器学习算法 课程代码
2021-10-23 09:03:45 144KB Code MachineLearning ML 机器学习