机器学习算法第二版 这是Packt发布的《 的代码库。 流行于数据科学和机器学习的算法 这本书是关于什么的? 机器学习以其强大而快速的大型数据集预测而获得了极大的普及。 但是,强大功能背后的真正力量是涉及大量统计分析的复杂算法,该算法搅动大型数据集并产生实质性见解。 本书涵盖以下激动人心的功能: 研究特征选择和特征工程过程 评估性能和误差权衡以进行线性回归 建立数据模型并使用不同类型的算法了解其工作方式 学习调整支持向量机(SVM)的参数 探索自然语言处理(NLP)和推荐系统的概念 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 例如,Chapter02。 该代码将如下所示: from sklearn.svm import SVC from sklearn.model_selection import cross_val_score svc =
2023-12-15 16:31:18 97KB Python
1
日志异常检测器 日志异常检测器是一个名为“ Project Scorpio”的开源项目代码。 LAD也简称为LAD。 它可以连接到流媒体源并生成对异常日志行的预测。 在内部,它使用无监督机器学习。 我们结合了许多机器学习模型来实现这一结果。 另外,它在回路反馈系统中还包括一个人。 项目背景 该项目的最初目标是开发一种自动方法,根据用户应用程序日志中包含的信息,在用户的应用程序出现问题时通知用户。 不幸的是,日志中充满了包含警告甚至是可以忽略的错误的消息,因此简单的“查找关键字”方法是不够的。 另外,日志的数量在不断增加,没有人愿意或无法监视所有日志。 简而言之,我们的最初目标是使用自然语言处理工具进行文本编码,并使用机器学习方法进行自动异常检测,以构建一种工具,该工具可以通过突出显示最日志来帮助开发人员针对失败的应用程序更快地执行根本原因分析如果应用程序开始产生高频率的异常日志,则很可能
2023-04-19 10:31:53 12.02MB kubernetes log word2vec machine-learning-algorithms
1
Machine_Learning_Algorithms-master,Machine_Learning_Algorithms-master 配套数据集及源代码 Machine_Learning_Algorithms-master,Machine_Learning_Algorithms-master 配套数据集及源代码
Machine-Learning-Algorithms-from-Scratch, 从零开始实现机器学习算法 Machine-Learning-Algorithms-from-Scratch从零开始实现机器学习算法。目前实现的算法:简单线性回归。数据集:来自Quandl的股票数据逻辑回归。数据集:Stanford ML课程数据集朴素
2022-12-19 13:54:22 109KB 开源
1
Machine Learning Algorithms Giuseppe Bonaccorso July 2017 Build strong foundation for entering the world of machine learning and data science with the help of this comprehensive guide
2022-12-19 13:47:25 131KB 机器学习 算法
1
使用机器学习进行疾病诊断 医疗保健领域的机器学习模型。 乳腺癌检测-使用KNN和SVM 糖尿病发作检测-使用神经网络和网格搜索 角膜动脉疾病(心脏病)诊断-使用神经网络 自闭症谱系障碍(神经发育障碍)诊断-使用简单的神经网络 数据集从UCI机器学习存储库获得。
1
机器学习模型的python与类库实现 本repo以李航博士的《统计学习方法》为路线,逐章讲解并实现其中所有的算法;从而,再加上常用的机器学习模型,例如GBDT,XGBoost,Light GBM,FM,FFM等,力争将传统的机器学习方法能够融汇互换 :party_popper: 。 统计学习方法|感知机模型 模型理论讲解: 模型代码实现: , 统计学习方法| K近邻 模型理论讲解: 模型代码实现: , 统计学习方法|朴素贝叶斯 模型理论讲解: 模型代码实现: , 统计学习方法|决策树 模型理论讲解: 模型代码实现: , 统计学习方法| logistic回归 模型理论讲解: 模型代码实现: , 机器学习| softmax 模型理论 模型代码实现: 统计学习方法|最大熵模型 模型理论讲解: 模型代码实现: 统计学习方法|支持向量机 模型理论讲解: 模型代码实现: , 统计学习方法|
2022-12-01 00:43:17 23.05MB python hmm crf machine-learning-algorithms
1
足球经理 使用数据和机器学习来分析足球运动员。 贡献者: 巴图拉普·雅尔辛 托马斯·麦卡塔夫(Thomas Mecattaf) 莫希什·查克拉瓦蒂(Mohnish Chakravarti) Description:我们几乎每天都在我们的xbox上玩FIFA职业模式。 在此项目中,我们使用基本的机器学习技术(例如线性回归,随机森林和神经网络)分析2015 / 16、2016 / 17、2017 / 18、2018 / 19赛季EPL玩家的游戏FIFA评分和实际表现网络。 有3个笔记本(一个用于抓取,一个用于基本数据分析,一个用于机器学习),以及3个HTML文件,它们更详细地解释了所有这些笔记本和我们的项目 进行此项目的一些动机是: 我们可以了解FIFA中的球员属性和等级吗? EA Sports不会发布有关球员排名和分配属性值的任何信息。 FIFA球员可以使用此回合为球队的每个职位
1
海豹 ⠀ ⠀⠀ 半监督图分类的PyTorch实现:分层图透视(WWW 2019) 抽象的 节点分类和图分类是两个图学习问题,它们分别预测节点的类标签和图的类标签。 图的节点通常代表现实世界的实体,例如,社交网络中的用户或蛋白质-蛋白质相互作用网络中的蛋白质。 在这项工作中,我们考虑一个更具挑战性但实际上有用的设置,其中节点本身是一个图实例。 这导致了分层图的透视图,这种透视图出现在许多领域中,例如社交网络,生物网络和文档收集。 例如,在社交网络中,一群具有共同兴趣的人形成一个用户组,而许多用户组则通过交互或普通成员相互连接。 我们在层次图中研究节点分类问题,其中“节点”是图实例,例如上述示例中的用户组。 由于标签通常受限于实际数据,因此我们通过谨慎/主动迭代(或简称SEAL-C / AI)设计了两种新颖的半监督解决方案,称为半监督图分类。 SEAL-C / AI采用了一个迭代框架,该框
1
LassoADMM:我们的论文“边缘计算中的协作回归学习的分布式ADMM方法”的源代码
2022-05-10 21:15:55 8.69MB ai matlab machine-learning-algorithms regression
1