線性代數在機器視覺 機器人 機器學習的基礎數學
2021-09-08 18:07:40 3.76MB 線性代數 最佳化篹法 最優化算法
1
物体检测 使用带有Tensorflow和Python的深度学习进行车辆检测 该程序说明了如何从头开始在多个对象的对象检测中训练自己的卷积神经网络(CNN)。 使用本教程,可以识别和检测图片,视频或网络摄像头中的特定对象。 下面描述了在Tensorflow环境中在窗口(10、7、8)上训练模型的步骤。 我使用了TensorFlow-v1.5,但该程序可在将来的版本中使用。 脚步 1.安装Anaconda 访问下载并安装Anaconda 访问 TensorFlow的网站描述了安装细节。 2.设置TensorFlow目录和Anaconda虚拟环境 TensorFlow对象检测API和Anac
1
具有交叉一致性训练 (CCT) 的半监督语义分割 , 本 repo 包含 CVPR 2020 论文的官方实现:Semi-Supervised Semantic Segmentation with Cross-Consistecy Training,它采用了传统的半监督学习的一致性训练框架进行语义分割,扩展到弱监督学习和在多个域。 强调 (1) 语义分割的一致性训练。 我们观察到,对于语义分割,由于任务的密集性,集群假设更容易在隐藏表示而不是输入上强制执行。 (2) 交叉培训。 我们为半监督语义分割提出了 CCT(Cross-Consistency Training),我们在其中定义了许多新的扰动,并展示了对编码器输出而不是输入执行一致性的有效性。 (3) 使用来自多个域的弱标签和像素级标签。 所提出的方法非常简单灵活,并且可以很容易地扩展到使用来自多个域的图像级标签和像素级标签。 要求
1
在Tensorflow上使用神经网络(SSD)进行实时手检测。 此仓库记录了用于使用Tensorflow(Object Detection API)训练手持探测器的步骤和脚本。 与任何基于DNN的任务一样,过程中最昂贵(也是最危险)的部分与查找或创建正确的(带注释)数据集有关。 我主要对检测桌子上的手感兴趣(以自我为中心的观点)。 我首先用了实验(结果不好)。 然后,我尝试了,该非常适合我的要求。 此回购/发布的目的是演示如何将神经网络应用于跟踪手(以自我为中心的视图和其他视图)的(困难)问题。 更好的是,提供可以适应其他用例的代码。 如果您在研究或项目中使用本教程或模型,请引用 。
2021-09-07 08:32:32 217.01MB computer-vision neural-network tensorflow detector
1
使用姿势估计进行跌倒检测 介绍 基于跌倒检测模型 PyPI库: ://pypi.org/project/openpifpaf/ 该检测可以在GPU和CPU上,多个视频,RTSP流以及网络摄像头/ USB摄像机上运行。 与大多数适用于单个大对象的开源跌倒检测模型不同,此改进的模型集成了一个人员跟踪器,该跟踪器可以检测多于一个人的场景中的跌倒。 示范影片 视频学分:50种跌落方法(),在单个NVIDIA Quadro P1000上运行 测试结果 UR跌落检测数据集( ),已在两台NVIDIA Quadro GV100上进行了测试。 精度:100% 召回率:83.33% F1得分:90.91% 注意:由于缺少可用的数据集,因此未测试误报和真否定。 环境 Ubuntu 18.04 x86_64 的Python 3.7.6 水蟒3 CUDA 10.2 用法 设置Conda环境
2021-09-06 10:39:08 64.39MB cpu computer-vision deep-learning gpu
1
Mastering OpenCV with Practical Computer Vision Projects_full中的代码 代码很有用并且附带英文注释,挺不错的,推荐大家下载。代码附带有实验素材 语言是cpp。英文的
2021-09-02 11:16:37 25.62MB opencv 入门 进阶 实践
1
1、Mastering OpenCV with Practical Computer Vision Projects [eBook].pdf 2、关于opencv的一本英文书籍。
2021-09-02 11:00:08 5.98MB Mastering OpenCV pdf
1
有关YOLO v3的使用,请参见。 ML.Net中的YOLO v5 将YOLO v5与ML.Net一起使用 多亏了 , 和 请参阅“的讨论,以问题。 参见分支 见keesschollaart81的 ML.Net中的YOLO v4 将YOLO v4与ML.Net一起使用 Onnx模式在onnx /型号回购可。 结果 资源 https://github.com/onnx/models/tree/master/vision/object_detection_segmentation/yolov4 https://github.com/hunglc007/tensorflow-yolov4-tflite https://towardsdatascience.com/yolo-v4-optimal-speed-accuracy-for-object-detection-79896ed4
1
Advanced Procrustes Analysis Models in Photogrammetric Computer Vision,Managing Editor。
2021-08-31 20:18:38 6.18MB 计算机视觉 形状分析
1
NCCV:使用Numba + CUDA + OpenCV进行计算机视觉和图像处理的短期课程
2021-08-31 16:37:09 5KB computer-vision cuda jupyter-notebook numba
1