什么是Kam1n0 v2? Kam1n0 v2.x是可扩展的装配管理和分析平台。 它允许用户首先将(大型)二进制文件集合索引到不同的存储库中,并提供不同的分析服务,例如克隆搜索和分类。 通过使用Application的概念,它支持多租户访问和程序集存储库的管理。 应用程序实例包含其自己的专用存储库,并提供专门的分析服务。 考虑到反向工程任务的多功能性,Kam1n0 v2.x服务器当前提供三种不同类型的克隆搜索应用程序: Asm-Clone , Sym1n0和Asm2Vec以及基于Asm2Vec的可执行分类。 可以将新的应用程序类型进一步添加到平台。 用户可以创建多个应用程序实例。 可以在特定的用户组之间共享应用程序实例。 应用程序存储库的读写访问权限和开/关状态可以由应用程序所有者控制。 Kam1n0 v2.x服务器可以使用多个共享资源池同时为应用程序提供服务。 Kam1n0由和在加
1
文章研究了Q-learning算法,并且基于该算法,对煤矿井下机器人的移动路径进行了规划,并且对规划方案进行了仿真分析,通过研究发现Q-learning算法的路径规划能力优越,特别是对于条件极为恶劣、工况十分复杂的煤矿井下作业环境而言,能够较好地获取满意的规划结果。
2023-02-16 23:43:00 478KB Q-learning算法 机器人 路径规划
1
盆式PPO 关于沉思-PPO 这是Pensieve [1]的一个简单的TensorFlow实现。 详细地说,我们通过PPO而非A3C培训了Pensieve。 这是一个稳定的版本,已经准备好训练集和测试集,并且您可以轻松运行仓库:只需键入 python train.py 反而。 将每300个时代在测试集(来自HSDPA)上评估结果。 实验结果 我们报告了熵权重β,奖励和熵的训练曲线。 通过双簧管网络轨迹评估结果。 提示:橙色曲线:pensieve-ppo; 蓝色曲线:pensieve-a2c 预训练模型 此外,我们还在添加了预训练模型 与原始Pensieve模型相比,该模型的平均QoE提高了7.03%(0.924-> 0.989)。 如果您有任何疑问,请随时告诉我。 [1] Mao H,Netravali R,Alizadeh M.带自适应神经网络自适应视频流[C] // ACM数据
2023-02-16 13:49:26 2.71MB reinforcement-learning dqn pensieve ppo
1
Welcome to the Practitioner Bundle of Deep Learning for Computer Vision with Python! This volume is meant to be the next logical step in your deep learning for computer vision education after completing the Starter Bundle. At this point, you should have a strong understanding of the fundamentals of parameterized learning, neural net works, and Convolutional Neural Networks (CNNs). You should also feel relatively comfortable using the Keras library and the Python programming language to train your own custom deep learning networks. The purpose of the Practitioner Bundle is to build on your knowledge gained from the Starter Bundle and introduce more advanced algorithms, concepts, and tricks of the trade — these tech- niques will be covered in three distinct parts of the book. The first part will focus on methods that are used to boost your classification accuracy in one way or another. One way to increase your classification accuracy is to apply transfer learning methods such as fine-tuning or treating your network as a feature extractor. We’ll also explore ensemble methods (i.e., training multiple networks and combining the results) and how these methods can give you a nice classification boost with little extra effort. Regularization methods such as data augmentation are used to generate additional training data – in nearly all situations, data augmentation improves your model’s ability to generalize. More advanced optimization algorithms such as Adam [1], RMSprop [2], and others can also be used on some datasets to help you obtain lower loss. After we review these techniques, we’ll look at the optimal pathway to apply these methods to ensure you obtain the maximum amount of benefit with the least amount of effort.
2023-02-14 22:12:08 60.62MB deep learning
1
马普里 这是一个多代理项目(commnet ) pytorch用于多代理粒子环境“ simple_spread”( ) 推理: 通讯网: Bicnet: Maddpg: 训练曲线: 如何使用 点安装-r requirements.txt cd MAProj /算法 python ma_main.py --algo maddpg --mode火车 待办事项清单 受过更多地图训练 修复图形内存泄漏 博客链接 https://zhuanlan.zhihu.com/p/143776727
1
不平衡学习:一种解决机器学习中不平衡数据集问题的Python程序包
2023-02-13 20:23:36 314KB python data-science machine-learning statistics
1
Machine Learning with R 英文无水印原版pdf pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书
2023-02-13 11:17:26 3.3MB Machine Learning R
1
MVision机器视觉机器视觉 感谢支持 无人驾驶的各个方面知识 1. 感知(Perception): 主要涉及的技术点包括场景理解、交通状况分析、路面检测、空间检测、 障碍物检测、行人检测、路沿检测、车道检测。还有一个比较新颖有趣的是通过胎压去检测道路质量。 在无人驾驶行业,有一套通用的数据集——KITTI数据集,里面有不同的数据,包括双目视觉的数据、定位导航的数据等。 物体检测(Object Detection): 传统方法主要是针对固定物体的检测。一般的方法是HOG( 方向梯度直方图),然后再加一个SVM的分类器。 而对于动
2023-02-12 18:15:52 1.04GB opencv robot deep-learning cnn
1
CommonGen:面向生成常识推理的受限文本生成挑战 @article{lin2019comgen, author = {Bill Yuchen Lin and Wangchunshu Zhou and Ming Shen and Pei Zhou and Chandra Bhagavatula and Yejin Choi and Xiang Ren}, title = {CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning}, journal = {Findings of EMNLP}, year = {2020} } CommonGen是一个新的受约束文本生成数据集,它需要不同种类的常识来生成有关日常场景的句子,并因此针对生成型
1
Learning Perl 7th Edition 文字版 PDF
2023-02-12 14:20:05 5.52MB Learning Perl 7th
1