doc2vec 该存储库包含Python脚本,用于使用训练doc2vec模型。 有关doc2vec算法的详细信息,请参见论文。 创建一个DeWiki数据集 Doc2vec是一种无监督的学习算法,并且可以使用任何文档集来训练模型。 文档可以是简短的140个字符的推文,单个段落(如文章摘要,新闻文章或书籍)中的任何内容。 对于德国人来说,一个好的基线是使用训练模型。 下载最新的DeWiki转储: wget http://download.wikimedia.org/dewiki/latest/dewiki-latest-pages-articles.xml.bz2 提取内容: wget http://medialab.di.unipi.it/Project/SemaWiki/Tools/WikiExtractor.py python WikiExtractor.py -c -b 2
2023-02-22 15:58:08 199KB nlp machine-learning word2vec doc2vec
1
金融机器学习 这是发布的《 的代码库。 它包含从头到尾完成本书所必需的所有支持项目文件。 关于这本书 面向金融的机器学习探索了机器学习的新进展,并展示了如何将其应用于金融领域。 它解释了主要机器学习技术背后的概念和算法,并提供了用于自己实现模型的示例Python代码。 如何执行这段程式码 此存储库中的代码计算量很大,最好在支持GPU的计算机上运行。 数据科学平台提供免费的GPU资源以及免费的在线Jupyter笔记本。 要在Kaggle笔记本上进行编辑,请单击“叉子”以创建笔记本的新副本。 您将需要一个Kaggle帐户。 或者,您可以只在上笔记本或下载代码并在本地运行。 第1章-从零开始的神经网络 从Scratch&Intro到Keras的神经网络: , 练习excel表格: 第2章-结构化数据 信用卡欺诈检测:, 第3章-计算机视觉构建基块 MNIST数字分类:在Kaggle上运行,
2023-02-22 11:27:25 2.7MB JupyterNotebook
1
深度语义角色标签 该存储库包含用于训练和使用Deep SRL模型的代码,该代码在以下内容中进行了描述: 如果您使用我们的代码,请按以下方式引用我们的论文: @inproceedings {he2017deep, title = {深层语义角色标签:什么起作用,下一步是什么}, 作者= {他,鲁恒和李,肯顿和刘易斯,迈克和Zettlemoyer,卢克}, booktitle = {计算语言学协会年会论文集}, 年= {2017} } 入门 先决条件: python应该使用Python2。您可以使用virtualenv进行模拟。 点安装numpy pip install theano ==
2023-02-22 10:44:24 54KB nlp theano deep-learning tagging
1
Information Science and Statistics Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had significant impact on both algorithms and applications.
2023-02-20 18:40:04 16.27MB 模式识别 机器学习 M. Jordan
1
在Tensorflow中使用记忆增强神经网络进行一枪学习。 更新:添加了对Tensorflow v1 *的支持。 本文采用记忆增强神经网络的一站式学习的Tensorflow实现。 目前的执行进度: 实用功能: 图像处理器 指标(精度) 相似度(余弦相似度) LSTM控制器和存储单元 批处理发生器 Omniglot测试人员代码 通过自动编码器进行无监督功能学习 牛/新出生识别 基准数据集是。 所有数据集都应放置在文件夹中。 亚当·桑托罗,谢尔盖Bartunov,马修Botvinick,大安Wierstra,蒂莫西Lillicrap,一次性学习与记忆,增强神经网络,[ ]
1
Learning Image Processing with OpenCV
2023-02-20 10:50:21 5.23MB OPENCV
1
软件工程报告+e-learning学习平台 报告中包含e-learning学习平台的用例图、活动图、顺序图等。 大的目录分为:1.软件可行性分析 2.问题定义 3.面向对象分析 4.面向对象设计 5.面向对象实现 6.软件测试
2023-02-20 09:02:25 3.56MB 软件工程课程设计报告
1
相对论的甘 它是什么? 此仓库具有相对论GAN的简单实现。 相对论修改了GAN目标,从而大大提高了训练的稳定性。 这两个目标是: 对于发电机培训步骤: err_d = ( torch.mean((y_real - torch.mean(y_gene) - 1) ** 2) + torch.mean((y_gene - torch.mean(y_real) + 1) ** 2) ) 凡y_real是鉴别得分的真实数据和y_gene是鉴别得分假数据 对于鉴别器: err_g = ( torch.mean((y_real - torch.mean(y_gene) + 1) ** 2) + torch.mean((y_gene - torch.mean(y_real) - 1) ** 2)
2023-02-19 23:44:37 27KB machine-learning deep-learning torch pytorch
1
TensorFlow2中的分布式RL 是一个使用实现各种流行的分布增强学习算法的存储库。 分布式RL是适用于随机环境的算法。 如果您想研究Distribution RL,则此存储库将是最佳选择。 dist-rl-tf2包含由领先的AI研究机构发布的三种Distribution RL算法。 演算法 C51 论文作者Marc G.Bellemare,Will Dabney,RémiMunos 方法OFF政策/时间差异/无模型仅限离散操作 观念的核心 # idea01. The output of the Q Network is a Distribution Vector, not a Scalar Value. def create_model ( self ): input_state = Input (( self . state_dim ,)) h1 = Dens
2023-02-19 23:32:48 458KB machine-learning deep-learning tensorflow dqn
1
Deep Learning with Python A Hands-on Introduction Authors: Ketkar, Nihkil Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often acquired by practitioners by reading source code, manuals, and posting questions on community forums, which tends to be a slow and a painful process. Deep Learning with Python allows you to ramp up to such practical know-how in a short period of time and focus more on the domain, models, and algorithms.
2023-02-19 16:59:46 5.47MB Python Deep Learnin
1