[{"title":"( 36 个子文件 2.7MB ) Machine-Learning-for-Finance:Packt出版的《金融机器学习》","children":[{"title":"Machine-Learning-for-Finance-master","children":[{"title":"6.3 MNIST DCGAN.ipynb <span style='color:#111;'> 534.18KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 559B </span>","children":null,"spread":false},{"title":"6.4 SGAN.ipynb <span style='color:#111;'> 13.02KB </span>","children":null,"spread":false},{"title":"5.2 Classifying Tweets.ipynb <span style='color:#111;'> 45.91KB </span>","children":null,"spread":false},{"title":"4.2 NN on time series.ipynb <span style='color:#111;'> 33.16KB </span>","children":null,"spread":false},{"title":"6.1 MNIST examples.ipynb <span style='color:#111;'> 208.35KB </span>","children":null,"spread":false},{"title":"1 Excel Exercise.xlsx <span style='color:#111;'> 173.45KB </span>","children":null,"spread":false},{"title":"5.1 Analyzing the news.ipynb <span style='color:#111;'> 23.18KB </span>","children":null,"spread":false},{"title":"7.2 A2C Balance.ipynb <span style='color:#111;'> 23.56KB </span>","children":null,"spread":false},{"title":"8_7_cython_setup.py <span style='color:#111;'> 126B </span>","children":null,"spread":false},{"title":"8.2 Hyperopt.ipynb <span style='color:#111;'> 13.08KB </span>","children":null,"spread":false},{"title":"4.3 Bayesian Deep Learning.ipynb <span style='color:#111;'> 58.78KB </span>","children":null,"spread":false},{"title":"3.1 MNIST.ipynb <span style='color:#111;'> 64.39KB </span>","children":null,"spread":false},{"title":"2 structured data.ipynb <span style='color:#111;'> 558.93KB </span>","children":null,"spread":false},{"title":"Introduction.ipynb <span style='color:#111;'> 37.68KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"3.2 Plant Classification.ipynb <span style='color:#111;'> 1.13MB </span>","children":null,"spread":false},{"title":"5.4 Translation.ipynb <span style='color:#111;'> 17.26KB </span>","children":null,"spread":false},{"title":"8.5 Tensorboard.ipynb <span style='color:#111;'> 5.13KB </span>","children":null,"spread":false},{"title":"9.2_Learning_to_be_fair.ipynb <span style='color:#111;'> 16.13KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 8.10KB </span>","children":null,"spread":false},{"title":"9.1_parity.xlsx <span style='color:#111;'> 55.17KB </span>","children":null,"spread":false},{"title":"8.4 LR_Search.ipynb <span style='color:#111;'> 56.67KB </span>","children":null,"spread":false},{"title":"8.1 Unit Testing Data.ipynb <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"cython_fib_8_7.pyx <span style='color:#111;'> 218B </span>","children":null,"spread":false},{"title":"Markov Monte Carlo.ipynb <span style='color:#111;'> 68.19KB </span>","children":null,"spread":false},{"title":"5.3 Topic Modeling.ipynb <span style='color:#111;'> 8.40KB </span>","children":null,"spread":false},{"title":"7.3 A2C Trading.ipynb <span style='color:#111;'> 12.38KB </span>","children":null,"spread":false},{"title":"8.6 TF Estimator.ipynb <span style='color:#111;'> 13.81KB </span>","children":null,"spread":false},{"title":"1 A neural network from scratch & Intro to Keras.ipynb <span style='color:#111;'> 42.63KB </span>","children":null,"spread":false},{"title":"PYMC3.ipynb <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"8.3 Tensorboard debugging.py <span style='color:#111;'> 940B </span>","children":null,"spread":false},{"title":"6.2 Fraud examples.ipynb <span style='color:#111;'> 68.24KB </span>","children":null,"spread":false},{"title":"4.1 EDA & Classic methods.ipynb <span style='color:#111;'> 873.39KB </span>","children":null,"spread":false},{"title":"7.1 Q-Learning.ipynb <span style='color:#111;'> 47.39KB </span>","children":null,"spread":false},{"title":"9.3_SHAP.ipynb <span style='color:#111;'> 9.67KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]