Machine-Learning-for-Finance:Packt出版的《金融机器学习》

上传者: 42099942 | 上传时间: 2023-02-22 11:27:25 | 文件大小: 2.7MB | 文件类型: ZIP
金融机器学习 这是发布的《 的代码库。 它包含从头到尾完成本书所必需的所有支持项目文件。 关于这本书 面向金融的机器学习探索了机器学习的新进展,并展示了如何将其应用于金融领域。 它解释了主要机器学习技术背后的概念和算法,并提供了用于自己实现模型的示例Python代码。 如何执行这段程式码 此存储库中的代码计算量很大,最好在支持GPU的计算机上运行。 数据科学平台提供免费的GPU资源以及免费的在线Jupyter笔记本。 要在Kaggle笔记本上进行编辑,请单击“叉子”以创建笔记本的新副本。 您将需要一个Kaggle帐户。 或者,您可以只在上笔记本或下载代码并在本地运行。 第1章-从零开始的神经网络 从Scratch&Intro到Keras的神经网络: , 练习excel表格: 第2章-结构化数据 信用卡欺诈检测:, 第3章-计算机视觉构建基块 MNIST数字分类:在Kaggle上运行,

文件下载

资源详情

[{"title":"( 36 个子文件 2.7MB ) Machine-Learning-for-Finance:Packt出版的《金融机器学习》","children":[{"title":"Machine-Learning-for-Finance-master","children":[{"title":"6.3 MNIST DCGAN.ipynb <span style='color:#111;'> 534.18KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 559B </span>","children":null,"spread":false},{"title":"6.4 SGAN.ipynb <span style='color:#111;'> 13.02KB </span>","children":null,"spread":false},{"title":"5.2 Classifying Tweets.ipynb <span style='color:#111;'> 45.91KB </span>","children":null,"spread":false},{"title":"4.2 NN on time series.ipynb <span style='color:#111;'> 33.16KB </span>","children":null,"spread":false},{"title":"6.1 MNIST examples.ipynb <span style='color:#111;'> 208.35KB </span>","children":null,"spread":false},{"title":"1 Excel Exercise.xlsx <span style='color:#111;'> 173.45KB </span>","children":null,"spread":false},{"title":"5.1 Analyzing the news.ipynb <span style='color:#111;'> 23.18KB </span>","children":null,"spread":false},{"title":"7.2 A2C Balance.ipynb <span style='color:#111;'> 23.56KB </span>","children":null,"spread":false},{"title":"8_7_cython_setup.py <span style='color:#111;'> 126B </span>","children":null,"spread":false},{"title":"8.2 Hyperopt.ipynb <span style='color:#111;'> 13.08KB </span>","children":null,"spread":false},{"title":"4.3 Bayesian Deep Learning.ipynb <span style='color:#111;'> 58.78KB </span>","children":null,"spread":false},{"title":"3.1 MNIST.ipynb <span style='color:#111;'> 64.39KB </span>","children":null,"spread":false},{"title":"2 structured data.ipynb <span style='color:#111;'> 558.93KB </span>","children":null,"spread":false},{"title":"Introduction.ipynb <span style='color:#111;'> 37.68KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"3.2 Plant Classification.ipynb <span style='color:#111;'> 1.13MB </span>","children":null,"spread":false},{"title":"5.4 Translation.ipynb <span style='color:#111;'> 17.26KB </span>","children":null,"spread":false},{"title":"8.5 Tensorboard.ipynb <span style='color:#111;'> 5.13KB </span>","children":null,"spread":false},{"title":"9.2_Learning_to_be_fair.ipynb <span style='color:#111;'> 16.13KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 8.10KB </span>","children":null,"spread":false},{"title":"9.1_parity.xlsx <span style='color:#111;'> 55.17KB </span>","children":null,"spread":false},{"title":"8.4 LR_Search.ipynb <span style='color:#111;'> 56.67KB </span>","children":null,"spread":false},{"title":"8.1 Unit Testing Data.ipynb <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"cython_fib_8_7.pyx <span style='color:#111;'> 218B </span>","children":null,"spread":false},{"title":"Markov Monte Carlo.ipynb <span style='color:#111;'> 68.19KB </span>","children":null,"spread":false},{"title":"5.3 Topic Modeling.ipynb <span style='color:#111;'> 8.40KB </span>","children":null,"spread":false},{"title":"7.3 A2C Trading.ipynb <span style='color:#111;'> 12.38KB </span>","children":null,"spread":false},{"title":"8.6 TF Estimator.ipynb <span style='color:#111;'> 13.81KB </span>","children":null,"spread":false},{"title":"1 A neural network from scratch & Intro to Keras.ipynb <span style='color:#111;'> 42.63KB </span>","children":null,"spread":false},{"title":"PYMC3.ipynb <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"8.3 Tensorboard debugging.py <span style='color:#111;'> 940B </span>","children":null,"spread":false},{"title":"6.2 Fraud examples.ipynb <span style='color:#111;'> 68.24KB </span>","children":null,"spread":false},{"title":"4.1 EDA & Classic methods.ipynb <span style='color:#111;'> 873.39KB </span>","children":null,"spread":false},{"title":"7.1 Q-Learning.ipynb <span style='color:#111;'> 47.39KB </span>","children":null,"spread":false},{"title":"9.3_SHAP.ipynb <span style='color:#111;'> 9.67KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明