SiamMask的C ++实现SiamMaskCpp SiamMask的C ++实现口号:numpy操作→cv :: Mat操作CNN→Torch :: jit :: script :: Module其他张量操作→torch :: Tensor操作比原始实现更快(速度从在单个NVIDIA GeForce GTX 1070上测试时为22fps至40fps)要求OpenCV> = 3(在3.4.0下测试)PyTorch> = 1(在1.3.0下测试)将SiamMask模型转换为Torch脚本您可以使用模型(带有优化模块)训练有素
2023-03-03 15:22:25 6.72MB C/C++ Machine Learning
1
使用TensorLy的Python中的Tensor方法 该存储库包含一系列有关张量学习的教程和示例,以及使用在Python中的实现以及如何使用 , 和框架作为后端将张量方法与深度学习结合在一起。 安装 您将需要安装TensorLy的最新版本才能按照说明中的运行这些示例。 最简单的方法是克隆存储库: git clone https://github.com/tensorly/tensorly cd tensorly pip install -e . 然后只需克隆此存储库: git clone https://github.com/JeanKossaifi/tensorly_notebooks 您准备好出发了! 目录 1-张量基础 2-张量分解 塔克分解 3-张量回归 低秩张量回归 4-Tensor方法和MXNet后端的深度学习 通过梯度下降的塔克分解 张量回归网络 5-使用PyT
1
PoseRBPF:用于6D对象姿势跟踪的Rao-Blackwellized粒子滤波器PoseRBPF:用于6D对象姿势跟踪的Rao-Blackwellized粒子滤波器PoseRBPF纸自我监督纸姿势估计视频机器人操纵视频引用PoseRBPF如果您发现PoseRBPF代码有用,请考虑引用:@inproceedings {deng2019pose,作者= {Xinke Deng和Arsalan Mousavian和Yu Xiang和Fei Xia和Timothy Bretl和Dieter Fox},标题= {PoseRBPF:用于6D对象姿态跟踪的Rao-Blackwellized粒子滤波器},书名= {机器人技术:科学
2023-03-03 10:33:39 17.2MB C/C++ Machine Learning
1
模仿学习赛车 这个精益的存储库具有从头开始训练和评估赛车Tensorflow模型所需的所有工具! 实际上,仅需5集(不到5分钟)即可生成足够的数据以使模型能够胜任! 注意:上面显示的游戏玩法是在5集训练模型后得出的。 使用更多的训练数据,它可以表现得更好! 此外,它还具有像素化功能,因此您可以看到模型在播放时所看到的效果(96 x 96)。
2023-03-02 16:58:20 12.58MB JupyterNotebook
1
自主驾驶车辆的深度模仿学习 自动驾驶汽车已经引起了学术界(例如牛津,麻省理工学院)和工业界(例如Google,特斯拉)的极大兴趣。 但是,由于普遍的知识,我们发现直接实现全自动驾驶(SAE 5级)非常困难。 为了解决这个问题,深度模仿学习是一种有前途的解决方案,可以从人类的演示中学习知识。 在这个项目中,我们研究了如何使用深度模仿学习来实现车辆动态控制(例如转向角,速度)。 我们使用了Udacity( )提供的数据集和模拟器以及现实世界中的comma.ai数据集。
2023-03-02 16:47:03 14KB Python
1
Chatbot_CN 基于深度学习、强化学习、对话引擎的多场景对话机器人 • • • • • • • • Made by Xu • :globe_with_meridians: 项目说明     Chatbot_CN 是一个基于第三代对话系统的多轮对话机器人项目,旨在于开发一个结合规则系统、深度学习、强化学习、知识图谱、多轮对话策略管理的 聊天机器人,目前随着时间的慢慢发展,从最初的一个 Chatbot_CN 项目,发展成了一个 Chatbot_* 的多个项目。目前已经包含了在多轮任务型对话的场景中,基于话术(Story)、知识图谱(K-G)、端到端对话(E2E)。目的是为了实现一个可以快速切换场景、对话灵活的任务型机器人。 同时,Chatbot_CN 不仅仅是一个对话系统,而是一套针对客服场景下的完整人工智能解决方案。对话是解决方案的核心和最重要一环,但不仅限于对话,还包括智能决策
1
深度照明器 Deep Illuminator是设计用于图像重新照明的数据增强工具。 它可用于轻松高效地生成单个图像的多种照明方式。 它已通过多个数据集和模型进行了测试,并已成功改善了性能。 它具有使用创建的内置可视化工具,以预览如何对目标图像进行照明。 增强实例 用法 使用此工具的最简单方法是通过Docker Hub: docker pull kartvel/deep-illuminator 可视化器 有了Deep Illuminator图像后,请运行以下命令以启动可视化器: docker run -it --rm --gpus all \ -p 8501:8501 --entrypoint streamlit \ kartvel/deep-illuminator run streamlit/streamlit_app.py 您将可以在localhost:8501上与它进行交互。
2023-03-02 10:34:05 5.22MB deep-learning pytorch illumination augmentations
1
Deep adversarial metric learning for cross-modal retrieval
2023-03-01 16:18:18 1.29MB 研究论文
1
The Elements of Statistical Learning 本资源转载自网络,如有侵权,请联系上传者或csdn删除
2023-02-27 10:00:14 7.91MB ESL Deep Learnin
1
该资源包涵这本书的英文版,中文版和课本中的代码。本资源都是高清版本
2023-02-26 10:38:17 77.3MB 机器学习 深度学习 实践教程
1