Deep-Illuminator:Deep Illuminator是设计用于图像重新照明的数据增强工具。 它可用于轻松高效地生成单个图像的多种照明方式

上传者: 42097967 | 上传时间: 2023-03-02 10:34:05 | 文件大小: 5.22MB | 文件类型: ZIP
深度照明器 Deep Illuminator是设计用于图像重新照明的数据增强工具。 它可用于轻松高效地生成单个图像的多种照明方式。 它已通过多个数据集和模型进行了测试,并已成功改善了性能。 它具有使用创建的内置可视化工具,以预览如何对目标图像进行照明。 增强实例 用法 使用此工具的最简单方法是通过Docker Hub: docker pull kartvel/deep-illuminator 可视化器 有了Deep Illuminator图像后,请运行以下命令以启动可视化器: docker run -it --rm --gpus all \ -p 8501:8501 --entrypoint streamlit \ kartvel/deep-illuminator run streamlit/streamlit_app.py 您将可以在localhost:8501上与它进行交互。

文件下载

资源详情

[{"title":"( 53 个子文件 5.22MB ) Deep-Illuminator:Deep Illuminator是设计用于图像重新照明的数据增强工具。 它可用于轻松高效地生成单个图像的多种照明方式","children":[{"title":"Deep-Illuminator-master","children":[{"title":"Dockerfile <span style='color:#111;'> 195B </span>","children":null,"spread":false},{"title":"assets","children":[{"title":"combined.gif <span style='color:#111;'> 2.87MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false},{"title":"app","children":[{"title":"probe_relighting","children":[{"title":"generate_images.py <span style='color:#111;'> 904B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"options.py <span style='color:#111;'> 396B </span>","children":null,"spread":false},{"title":"preprocessing.py <span style='color:#111;'> 1009B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 505B </span>","children":null,"spread":false},{"title":"demotools.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"blocks.py <span style='color:#111;'> 12.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"originals","children":[{"title":"example.jpg <span style='color:#111;'> 268.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"output","children":[{"title":"eg.jpg <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"streamlit","children":[{"title":"streamlit_app.py <span style='color:#111;'> 8.48KB </span>","children":null,"spread":false},{"title":"example_images","children":[{"title":"mannequin.jpg <span style='color:#111;'> 139.12KB </span>","children":null,"spread":false},{"title":"outdoor.jpg <span style='color:#111;'> 514.83KB </span>","children":null,"spread":false},{"title":"office.jpg <span style='color:#111;'> 268.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"vae","children":[{"title":"models","children":[{"title":"base.py <span style='color:#111;'> 842B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 90B </span>","children":null,"spread":false},{"title":"beta_vae.py <span style='color:#111;'> 6.24KB </span>","children":null,"spread":false}],"spread":false},{"title":"configs","children":[{"title":"gammavae.yaml <span style='color:#111;'> 453B </span>","children":null,"spread":false},{"title":"wae_mmd_imq.yaml <span style='color:#111;'> 449B </span>","children":null,"spread":false},{"title":"vampvae.yaml <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"swae.yaml <span style='color:#111;'> 498B </span>","children":null,"spread":false},{"title":"logcosh_vae.yaml <span style='color:#111;'> 430B </span>","children":null,"spread":false},{"title":"dip_vae.yaml <span style='color:#111;'> 439B </span>","children":null,"spread":false},{"title":"vae.yaml <span style='color:#111;'> 399B </span>","children":null,"spread":false},{"title":"factorvae.yaml <span style='color:#111;'> 510B </span>","children":null,"spread":false},{"title":"cat_vae.yaml <span style='color:#111;'> 509B </span>","children":null,"spread":false},{"title":"joint_vae.yaml <span style='color:#111;'> 718B </span>","children":null,"spread":false},{"title":"infovae.yaml <span style='color:#111;'> 550B </span>","children":null,"spread":false},{"title":"miwae.yaml <span style='color:#111;'> 430B </span>","children":null,"spread":false},{"title":"bhvae.yaml <span style='color:#111;'> 425B </span>","children":null,"spread":false},{"title":"iwae.yaml <span style='color:#111;'> 406B </span>","children":null,"spread":false},{"title":"wae_mmd_rbf.yaml <span style='color:#111;'> 450B </span>","children":null,"spread":false},{"title":"dfc_vae.yaml <span style='color:#111;'> 391B </span>","children":null,"spread":false},{"title":"vq_vae.yaml <span style='color:#111;'> 447B </span>","children":null,"spread":false},{"title":"cvae.yaml <span style='color:#111;'> 425B </span>","children":null,"spread":false},{"title":"mssim_vae.yaml <span style='color:#111;'> 395B </span>","children":null,"spread":false},{"title":"betatc_vae.yaml <span style='color:#111;'> 460B </span>","children":null,"spread":false},{"title":"lvae.yaml <span style='color:#111;'> 469B </span>","children":null,"spread":false},{"title":"hvae.yaml <span style='color:#111;'> 433B </span>","children":null,"spread":false},{"title":"bbvae.yaml <span style='color:#111;'> 473B </span>","children":null,"spread":false}],"spread":false},{"title":"utils.py <span style='color:#111;'> 620B </span>","children":null,"spread":false},{"title":"experiment.py <span style='color:#111;'> 9.42KB </span>","children":null,"spread":false},{"title":"streamlit_vae.py <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"temp","children":[{"title":"MID Averaged Probes_Office_1_None.gif <span style='color:#111;'> 2.22MB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 68B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"network_config.yaml <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"setup.py <span style='color:#111;'> 120B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明