tensorly-notebooks:使用TensorLy的Python中的Tensor方法

上传者: 42107374 | 上传时间: 2023-03-03 14:11:54 | 文件大小: 1.43MB | 文件类型: ZIP
使用TensorLy的Python中的Tensor方法 该存储库包含一系列有关张量学习的教程和示例,以及使用在Python中的实现以及如何使用 , 和框架作为后端将张量方法与深度学习结合在一起。 安装 您将需要安装TensorLy的最新版本才能按照说明中的运行这些示例。 最简单的方法是克隆存储库: git clone https://github.com/tensorly/tensorly cd tensorly pip install -e . 然后只需克隆此存储库: git clone https://github.com/JeanKossaifi/tensorly_notebooks 您准备好出发了! 目录 1-张量基础 2-张量分解 塔克分解 3-张量回归 低秩张量回归 4-Tensor方法和MXNet后端的深度学习 通过梯度下降的塔克分解 张量回归网络 5-使用PyT

文件下载

资源详情

[{"title":"( 27 个子文件 1.43MB ) tensorly-notebooks:使用TensorLy的Python中的Tensor方法","children":[{"title":"tensorly-notebooks-master","children":[{"title":"README.rst <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"TRL.png <span style='color:#111;'> 161.48KB </span>","children":null,"spread":false},{"title":"cat.thumb <span style='color:#111;'> 21.25KB </span>","children":null,"spread":false},{"title":"tucker.png <span style='color:#111;'> 54.88KB </span>","children":null,"spread":false},{"title":"fibers.png <span style='color:#111;'> 213.01KB </span>","children":null,"spread":false},{"title":"FC.png <span style='color:#111;'> 120.51KB </span>","children":null,"spread":false},{"title":"tensor_contraction.png <span style='color:#111;'> 26.99KB </span>","children":null,"spread":false},{"title":"tucker.pdf <span style='color:#111;'> 11.73KB </span>","children":null,"spread":false},{"title":"triplets.png <span style='color:#111;'> 15.45KB </span>","children":null,"spread":false},{"title":"tensor_cartoon.jpg <span style='color:#111;'> 203.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"05_pytorch_backend","children":[{"title":"tucker_decomposition_tensorly_and_pytorch.ipynb <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"tensor_regression_layer_pytorch.ipynb <span style='color:#111;'> 397.07KB </span>","children":null,"spread":false},{"title":"cnn_acceleration_tensorly_and_pytorch.ipynb <span style='color:#111;'> 21.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"02_tensor_decomposition","children":[{"title":"tucker_decomposition.ipynb <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"cp_decomposition.ipynb <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false}],"spread":true},{"title":"07_pydata_sparse_backend","children":[{"title":"sparse_tucker.ipynb <span style='color:#111;'> 75.50KB </span>","children":null,"spread":false},{"title":"sparse_nonnegative.ipynb <span style='color:#111;'> 11.61KB </span>","children":null,"spread":false},{"title":"sparse_parafac.ipynb <span style='color:#111;'> 10.46KB </span>","children":null,"spread":false},{"title":"sparse_symmetric_parafac.ipynb <span style='color:#111;'> 7.77KB </span>","children":null,"spread":false},{"title":"sparse_missing_values.ipynb <span style='color:#111;'> 19.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"resources","children":[{"title":"imagenet_classes.json <span style='color:#111;'> 30.83KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 999B </span>","children":null,"spread":false},{"title":"04_mxnet_backend","children":[{"title":"tensor_regression_layer_MXNet.ipynb <span style='color:#111;'> 408.43KB </span>","children":null,"spread":false},{"title":"tucker_decomposition_with_mxnet_and_tensorly.ipynb <span style='color:#111;'> 6.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"06_tensorflow_backend","children":[{"title":"tensorflow_tucker.ipynb <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"01_tensor_basics","children":[{"title":"tensor_manipulation.ipynb <span style='color:#111;'> 19.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"03_tensor_regression","children":[{"title":"Low_rank_tensor_regression.ipynb <span style='color:#111;'> 35.69KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明