Pytorch 官方书籍英文版配套代码
2023-03-06 22:16:53 169.37MB pytorch 代码 书籍
1
SimCLR-视觉表示形式对比学习的简单框架 消息! 我们发布了SimCLR的TF2实现(以及TF2中的转换后的检查点),它们位于。 消息! 新增了用于Colabs,请参见。 SimCLR的插图(来自 )。 SimCLRv2的预训练模型 我们在这里开源了总共65个经过预训练的模型,与论文的表1中的模型相对应: 深度 宽度 SK 参数(M) 金融时报(1%) FT(10%) FT(100%) 线性评估 监督下 50 1倍 错误的 24 57.9 68.4 76.3 71.7 76.6 50 1倍 真的 35 64.5 72.1 78.7 74.6 78.5 50 2倍 错误的 94 66.3 73.9 79.1 75.6 77.8 50 2倍 真的 140 70.6 77.0 81.3 77.7 79.3 101 1
1
轻型GBM 高性能渐变增强-适用于Ruby 安装 将此行添加到您的应用程序的Gemfile中: gem 'lightgbm' 在Mac上,还要安装OpenMP: brew install libomp 培训API 准备数据 x = [ [ 1 , 2 ] , [ 3 , 4 ] , [ 5 , 6 ] , [ 7 , 8 ] ] y = [ 1 , 2 , 3 , 4 ] 训练模型 params = { objective : "regression" } train_set = LightGBM :: Dataset . new ( x , label : y ) booster = LightGBM . train ( params , train_set ) 预测 booster . predict ( x ) 将模型保存到文件 booster . save_mode
2023-03-06 19:44:59 62KB machine-learning lightgbm rubyml Ruby
1
菌素 phygnn (fi-geon | ˈfi-jən)名词。 物理学指导的神经网络 一只稀有的神话鸟 物理学指导的神经网络的这种实现通过通用的损失项增强了传统的神经网络损失功能,该损失项可用于指导神经网络学习物理或理论约束。 phygnn使科学软件开发人员和数据科学家能够轻松地将机器学习模型集成到物理和工程应用程序中。当将纯数据驱动的机器学习模型应用于科学应用时,例如当机器学习模型产生物理上不一致的结果或难以推广到样本外场景时,此框架应有助于缓解一些经常遇到的挑战。 有关phygnn类框架的详细信息,请参见 例如,使用phygnn架构进行回归,分类甚至GAN应用,请参见 在国家可再生能源实验室(NREL),我们使用phygnn框架来补充传统的基于卫星的云属性预测模型。当传统的机械模型失效时,我们使用phygnn预测云的光学特性,并使用基于张量的完整辐射传递模型作为物理损耗函数,将预测
2023-03-06 11:07:31 7.89MB machine-learning neural-networks Python
1
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In CVPR. 770–778. 论文原文
2023-03-06 00:26:01 281KB 深度学习
1
THUMT:神经机器翻译的开源工具包 内容 介绍 机器翻译是一种自然语言处理任务,旨在自动使用计算机翻译自然语言。 最近几年见证了端到端神经机器翻译的飞速发展,这已成为实际MT系统中的新主流方法。 THUMT是由开发的用于神经机器翻译的开源工具包。 THUMT的网站是: ://thumt.thunlp.org/。 在线演示 THUMT的在线演示可从。 涉及的语言包括古代汉语,阿拉伯语,中文,英语,法语,德语,印尼语,日语,葡萄牙语,俄语和西班牙语。 实作 THUMT当前具有三个主要实现: :与开发的新实现。 它实现了Transformer模型( Transformer )( )。
1
BB-SVM模型用于论文数据集的自动人格检测(大五人格标记特征) 该存储库包含基于BERT模型的Bagging SVM,用于对Essays数据集进行分类。 安装 有关可以通过以下方式安装的相关软件包的列表,请参阅requirements.txt。 pip -r requirements.txt 本文使用指定的版本。 请注意,需求模块的更新版本可能会更改结果。 一些实验证明,更新的sklearn可以提高准确性。 但是,还请检查按需要求(例如,要求1.10 3.8
1
MobileNetV3的PyTorch实现这是MobileNetV3架构的PyTorch实现,如论文Searching MobileNetV3中所述。 一些细节可能与原始论文有所不同,欢迎讨论MobileNetV3的PyTorch实现。这是论文Searching MobileNetV3中描述的MobileNetV3体系结构的PyTorch实现。 一些细节可能与原始论文有所不同,欢迎讨论并帮助我解决。 [NEW]小版本mobilenet-v3的预训练模型在线,准确性达到与纸张相同的水平。 [NEW]该文件于5月17日更新,因此我为此更新了代码,但仍然存在一些错误。 [NEW]我在全局AV之前删除了SE
2023-03-03 20:17:12 8KB Python Deep Learning
1
SiamMask的C ++实现SiamMaskCpp SiamMask的C ++实现口号:numpy操作→cv :: Mat操作CNN→Torch :: jit :: script :: Module其他张量操作→torch :: Tensor操作比原始实现更快(速度从在单个NVIDIA GeForce GTX 1070上测试时为22fps至40fps)要求OpenCV> = 3(在3.4.0下测试)PyTorch> = 1(在1.3.0下测试)将SiamMask模型转换为Torch脚本您可以使用模型(带有优化模块)训练有素
2023-03-03 15:22:25 6.72MB C/C++ Machine Learning
1
使用TensorLy的Python中的Tensor方法 该存储库包含一系列有关张量学习的教程和示例,以及使用在Python中的实现以及如何使用 , 和框架作为后端将张量方法与深度学习结合在一起。 安装 您将需要安装TensorLy的最新版本才能按照说明中的运行这些示例。 最简单的方法是克隆存储库: git clone https://github.com/tensorly/tensorly cd tensorly pip install -e . 然后只需克隆此存储库: git clone https://github.com/JeanKossaifi/tensorly_notebooks 您准备好出发了! 目录 1-张量基础 2-张量分解 塔克分解 3-张量回归 低秩张量回归 4-Tensor方法和MXNet后端的深度学习 通过梯度下降的塔克分解 张量回归网络 5-使用PyT
1