监督的svm 数据科学分配解决方案。 使用支持向量机作为基础分类器的半监督分类器的实现。 该数据集是在代码中随机生成的。 依存关系: 麻木 斯克莱恩 分类问题 给定数据: 大量未标记的数据 少量标注数据 能够正确标记未标记数据集中任何样本的人类专家,其费用与新标记样本的数量成正比 目标: 降低成本 提高分类器的准确性 解决方案 该解决方案将具有最高置信度的预测标签添加到标签数据集中。 置信度最低的标签表明分类器需要人工专家的帮助。 这些真实的标签将添加到数据集中,并且成本会增加。 人类专家的提示数量不能超过标记样本的初始数量-标记数据的数量只能加倍。 如果准确性为100%,成本达到先前说明的限制或没有将任何样本添加到标记的数据集中,则算法终止。 例子 设置: 数据集:10000个样本,3个类,每个类2个类,3个信息性特征。 最大限度。 迭代次数:100 数据集中未标记数据的
2022-03-06 11:48:49 2KB Python
1
SfM学习者 该代码库实现了本文所述的系统: 通过视频无监督地学习深度和自我运动 ,,, 在CVPR 2017(口头)中。 有关更多详细信息,请参见。 如有任何疑问,请联系( )。 先决条件 该代码库是使用Tensorflow 1.0,CUDA 8.0和Ubuntu 16.04开发和测试的。 运行单视图深度演示 我们提供了用于运行我们的单视图深度预测模型的演示代码。 首先,通过运行以下命令下载预训练的模型 bash ./models/download_depth_model.sh 然后,您可以使用提供的ipython-notebook demo.ipynb来运行演示。 准备训练数据 为
1
为了进一步提高双聚类结果的性能,提出了一种基于变分贝叶斯的半监督双聚类算法。首先,在双聚类过程中引入了行和列的辅助信息,并提出了相应的联合分布概率模型;然后基于变分贝叶斯学习方法对联合概率分布中的参数进行估计;最后,通过合成数据集和真实的基因表达式数据集对提出的算法性能进行评估。实验表明,提出的算法在进行双聚类分析时,其归一化互信息量明显优于相关的双聚类算法。
2022-03-02 11:13:14 1.22MB 工程技术 论文
1
使用DEAP数据集中记录的EEG信号对情绪进行分类,以使用机器学习算法(如支持向量机和K - 最近邻)实现高精度得分。 1)将数据集存储在文件夹中 - > data/ 2)运行 runFile.py 文件
参阅吴祖增教授译注的《游戏编程中的人工智能技术》而拾慧的学习ppt, 增加了对问题的更浅显的个人看法。
2022-02-28 18:00:44 634KB 遗传算法 神经网络 BP 监督学习
1
监督数据增强 总览 无监督数据增强或UDA是一种半监督学习方法,可在各种语言和视觉任务上实现最新的结果。 仅用20个标记的示例,UDA优于以前在25,000个标记的示例上训练的IMDb的最新技术。 模型 带标签的示例数 错误率 混合增值税(以前的SOTA) 25,000 4.32 伯特 25,000 4.51 UDA 20 4.20 使用CIFAR-10(带有4,000个标记的示例)和SVHN(带有1,000个带标记的示例),可将最新方法的错误率降低30%以上: 模型 CIFAR-10 SVHN ICT(以前的SOTA) 7.66±.17 3.53±.07 UDA 4.31±.08 2.28±.10 有了10%的标签数据,它就对ImageNet进行了重大改进。 模型 top-1精度 前5位准确性 ResNet-50 55.09 77.26 UDA 68.78 88.80 这个怎么运作 UDA是一种半监督学习的方法,它减少了对带有标记的示例的需求,并更好地利用了没有标记的示例。 我们发布的内容 我们发布以下内容: 基于BERT的文本分
1
针对托攻击提出一种半监督托检测模型,对标记用户分类计算簇中心,给出中心用户相似度特征属性。对不同攻击选择合适的特征指标,把输入用户划分到不同的簇集中,通过簇集中输入用户全部评分项为最大值的均值与标记用户对该项均值差,确定攻击项。依据特征指标对不同簇集进行两次分类,进而确定攻击对象。实验证明,该检测算法对不同的托攻击有较高的检测准确率。
2022-02-28 10:37:56 624KB 推荐系统 托攻击 特征指标 半监督 聚类
1
Tensorflow中的深度嵌入聚类(DEC) 的Tensorflow实现。 安装 >>> pip3 install -r requirements.txt 训练 usage: train.py [-h] [--batch-size BATCH_SIZE] [--gpu-index GPU_INDEX] optional arguments: -h, --help show this help message and exit --batch-size BATCH_SIZE Train Batch Size --gpu-index GPU_INDEX GPU Index Number 可视化 inference.py返回潜在表示形式($ z $),并导出z.t
1
四川省工程质量监督报告知识.pdf
2022-02-25 09:07:44 44KB 网络资源
公路工程质量监督申请书参考.pdf
2022-02-24 10:04:03 23KB 网络资源