DEAP(DEtection of Affect in Audiences using Physiological signals)数据集是研究情感识别领域的一个重要资源,尤其在利用脑电图(EEG)信号分析人类情绪反应时。这个数据集包含了40名参与者对32个不同音乐视频片段的情绪反应,涵盖了喜悦、愤怒、悲伤、平静四种基本情绪类别。研究人员可以通过分析这些EEG数据,结合其他生理指标如心率、皮肤电导等,来训练和评估情感识别模型。 CNN(卷积神经网络)和LSTM(长短时记忆网络)是两种广泛应用于深度学习领域的神经网络架构,特别适合处理时间和空间上的连续数据。在脑电情绪识别任务中,CNN通常用于捕捉EEG信号中的空间模式,因为它们能够自动学习特征,如不同脑区之间的连接模式。而LSTM则擅长捕捉时间序列数据的长期依赖性,这对于理解EEG信号随时间变化的情绪动态非常有用。 在使用DEAP数据集进行情绪识别时,首先需要预处理原始EEG数据,包括去除噪声、滤波以消除高频或低频干扰,以及标准化或归一化数据以减少个体差异。接着,可以将预处理后的EEG信号划分为合适的窗口大小,每个窗口对应一段连续的信号,然后用CNN提取每一窗口内的特征。LSTM可以接在CNN之后,对连续的特征窗口进行建模,以捕捉情绪变化的动态过程。 训练模型时,可以采用交叉验证策略,如k折交叉验证,来评估模型的泛化能力。损失函数通常选择多类交叉熵,优化器可以选择Adam或SGD。在模型设计上,可以尝试不同的CNN-LSTM组合,比如多层CNN提取特征后馈入单层或多层LSTM,或者在LSTM前后添加全连接层进行进一步的抽象和分类。 此外,为了提高模型性能,可以考虑集成学习,比如基于多个模型的投票或平均结果。同时,正则化技术如Dropout和Batch Normalization也能帮助防止过拟合,提高模型的稳定性和泛化能力。 在评估模型时,除了准确率之外,还应关注精确率、召回率、F1分数以及混淆矩阵,以全面理解模型在各个情绪类别的表现。同时,AUC-ROC曲线也是一个重要的评估指标,它衡量了模型区分不同情绪状态的能力。 DEAP数据集结合CNN和LSTM提供了研究脑电情绪识别的强大工具。通过不断调整网络结构、优化参数,以及利用各种技术提高模型性能,我们可以更深入地理解人的情感反应,并为实际应用如人机交互、心理健康监测等领域提供支持。
2024-07-28 16:55:03 27.42MB 数据集 lstm
1
文件比较大,2.71G,需要的自己下载,这里只有网盘链接,提取码要下载 https://pan.baidu.com/s/1Ow0ZMYwdGFLndPh_qKvuPQ
2024-05-07 13:08:37 7B 数据集
1
情感计算是快速发展的领域之一,它激发了情感检测领域的许多应用研究。 本文简要介绍了使用公开数据进行基于 EEG 的情绪检测的相关工作以及一种检测内部情绪状态的方法。 开发了一种有监督的机器学习算法来识别二维模型中的人类内心情绪状态。 来自 DEAP 和 SEED-IV 数据库的脑电图信号被考虑用于情绪检测。 离散小波变换应用于预处理信号以提取所需的 5 个频段。 提取了功率、能量、微分熵和时域等特征。 开发通道智能 SVM 分类器并完成通道组合器以检测适当的情绪状态。 DEAP数据库的四类分类率为74%、86%、72%和84%,SEED-IV数据库的分类率为79%、76%、77%和74%。
2024-04-11 09:10:51 701KB 支持向量机 毕业设计
1
数据集和相关代码都有,有些已经运行过,还有对应的论文。
2023-09-09 15:56:41 256B 软件/插件 脑电信号 deap 数据集
有微分熵的提取,并转化为4维数据形式【4800,4,9,9】与近几年发表的论文数据处理形式一样。测试集准确率达91.62验证集达93.96
2023-09-05 09:11:27 8KB cnn lstm 情绪识别 DEAP
1
EEG-Emotion-classification-master_merelyts3_said63o_songc4x_DEAP情绪识别_DEAP数据集下载_源码.rar
2023-05-08 09:47:17 3.85MB
数据包络分析软件deap 2.1
2023-03-11 19:30:34 450KB 数据分析
1
自行整理的Deap脑电数据集,已上传百度网盘,欢迎有需要的朋友下载,如失效请联系。 这些文件包含Matlab中数据的下采样(至128Hz)、预处理和分段版本(数据预处理)_matlab.zip文件)和pickled python/numpy(数据预处理)_python.zip文件)格式。这个版本的数据非常适合那些希望快速测试分类或回归技术而不需要首先处理所有数据的人。每个zip文件包含32个.dat(python)或.mat(matlab)文件,每个参与者一个。
2022-11-16 18:32:36 14KB Deap数据集 脑电信号 数据集
1
该数据库是由来自英国伦敦玛丽皇后大学等单位的研究人员通过实验采集到的,用来研究人类情感状态的多通道数据。该数据库主要包括每个被试在面部表情视频刺激下的EEG数据以及心理量表数据。
2022-09-30 16:03:16 12KB EEG EmotionAnalysis DEAP
1
针对基于DEAP数据集,进行了ANN、CNN、LSTM模型对比。 含有处理好的数据集和源代码。
2022-05-16 11:05:34 5.68MB 源码软件
1