球形文字嵌入 在NeurIPS 2019中发布的用于Spherical Text Embedding的源代码。代码结构(尤其是文件读取和保存功能)改编自。 要求 GCC编译器(用于编译源c文件):请参阅有关的。 预训练的嵌入 我们在上提供了经过预训练的JoSE嵌入。 与诸如Word2Vec和GloVe之类的欧几里德嵌入不同,球形嵌入不一定受益于高维空间,因此,首先从低维嵌入开始可能是一个好主意。 运行代码 我们提供了一个shell脚本run.sh来编译源文件和训练嵌入。 注意:在准备训练文本语料库时,请确保文件中的每一行都是一个文档/段落。 超参数 注:建议使用默认的超参数,尤其是阴性样品(数量-negative )和损失函数保证金( -margin )。 调用不带参数的命令以获得超参数及其含义的列表: $ ./src/jose Parameters: -train
2025-09-11 16:32:18 10.76MB word-embeddings unsupervised-learning
1
无监督异常检测库 可用算法: 神经网络 神经网络 LOF(以scikit-learn软件包提供) COF INFLO 环形 LOCI 阿罗西 克洛夫 微博 数码相机 CMGOS HBOS 前列腺癌 CMGOS 一类SVM(可在scikit-learn软件包中获得) @作者Iskandar Sitdikov
2024-09-04 10:09:36 6KB python clustering kmeans unsupervised-learning
1
解开变分自编码器 PyTorch 实现的论文 团队成员: 安德烈亚斯·斯帕诺普洛斯 ( ) Demetrios Konstantinidis ( ) 存储库结构 目录包含我们迄今为止创建的模型。 一路上还会有更多。 python脚本是主要的可执行文件。 目录包含可用于训练和测试的 colab notebook。 在目录中有一个 ,其中详细解释了变分自动编码器的基本数学概念。 在目录中有一些配置文件可用于创建模型。 在目录中有我们通过使用各种配置运行模型得到的结果。 楷模 目前支持两种模型,一个简单的变分自动编码器和一个解开版本 (beta-VAE)。 模型实现可以在目录中找到。 这些模型是使用PyTorch Lightning开发的。 变分自编码器 变分自编码器是一个生成模型。 它的目标是学习数据集的分布,然后从相同的分布中生成新的(看不见的)数据点。 在下图中,我们可
1
SimCLR-视觉表示形式对比学习的简单框架 消息! 我们发布了SimCLR的TF2实现(以及TF2中的转换后的检查点),它们位于。 消息! 新增了用于Colabs,请参见。 SimCLR的插图(来自 )。 SimCLRv2的预训练模型 我们在这里开源了总共65个经过预训练的模型,与论文的表1中的模型相对应: 深度 宽度 SK 参数(M) 金融时报(1%) FT(10%) FT(100%) 线性评估 监督下 50 1倍 错误的 24 57.9 68.4 76.3 71.7 76.6 50 1倍 真的 35 64.5 72.1 78.7 74.6 78.5 50 2倍 错误的 94 66.3 73.9 79.1 75.6 77.8 50 2倍 真的 140 70.6 77.0 81.3 77.7 79.3 101 1
1
Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第一周所有jupyter notebook文件(包括实验室练习文件)
2022-12-03 16:27:03 3.47MB ML-新课代码
1
Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第二周所有jupyter notebook文件(包括实验室练习文件)
2022-12-03 16:27:02 1.88MB ML-新课代码
1
Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第三周所有jupyter notebook文件(包括实验室练习文件)
2022-12-03 16:27:02 4.66MB ML-新课代码
1
TensorFlow自组织图 TensorFlow 1.5和Python 3.6的Kohonen自组织映射1的实现。 提供了一个Tensorflow V2版本,该版本位于tfv2分支中。 (感谢Dragan!)这最初是基于代码,但进行了一些关键的修改: 使用TensorFlow广播语义而不是tf.pack和for循环。 输入数据应该来自Tensor而不是tf.placeholder ,从而可以与更快,更复杂的输入数据管道一起使用。 培训使用批处理算法而不是在线算法,如果您具有GPU RAM,则可以大大提高速度。 另外,因此,我添加了... 多GPU支持(对于具有多个GPU的单机,它没有多节点培训)。 Tensorboard可视化的一些摘要操作 example.py通过在3个群集玩具数据集上训练SOM来包含其用法的简单示例。 产生的u-matrix应该看起来像这样: 请注意,该示
1
SESF保险丝 SESF-Fuse:用于多焦点图像融合的无监督深度模型 抽象的 在这项工作中,我们提出了一种无监督的深度学习模型来解决多焦点图像融合问题。 首先,我们以无监督的方式训练编码器-解码器体系结构,以获取输入图像的深层特征。 然后,我们利用这些特征和空间频率来测量活动水平,这在多焦点融合任务中起着至关重要的作用。 该方法背后的关键点在于,只有景深(DOF)内的对象在照片中才具有清晰的外观,而其他对象则很可能被模糊。 与以前的工作相比,我们的方法分析的是深层特征的锐利外观,而不是原始图像。 实验结果表明,与现有的16种融合方法相比,该方法在客观和主观评估中均达到了最新的融合性能。 可视化 我们在下图中显示融合结果的可视化。 第一行是近焦点源图像,第二行是远焦点源图像。 第三行是我们方法的决策图,最后一行是融合结果。 分行介绍 我们在该分支机构中提供SESF-Fuse的培训和测试方法
1
Hands-On Unsupervised Learning Using Python How to Build Applied Machine Learning Solutions from Unlabeled Data Ankur A. Patel
2022-03-09 11:09:09 4.57MB 无监督学习 机器学习 Python 深度学习
1