semi-supervised-svm:数据科学作业。 半监督分类算法-源码

上传者: 42136826 | 上传时间: 2022-03-06 11:48:49 | 文件大小: 2KB | 文件类型: -
半监督的svm 数据科学分配解决方案。 使用支持向量机作为基础分类器的半监督分类器的实现。 该数据集是在代码中随机生成的。 依存关系: 麻木 斯克莱恩 分类问题 给定数据: 大量未标记的数据 少量标注数据 能够正确标记未标记数据集中任何样本的人类专家,其费用与新标记样本的数量成正比 目标: 降低成本 提高分类器的准确性 解决方案 该解决方案将具有最高置信度的预测标签添加到标签数据集中。 置信度最低的标签表明分类器需要人工专家的帮助。 这些真实的标签将添加到数据集中,并且成本会增加。 人类专家的提示数量不能超过标记样本的初始数量-标记数据的数量只能加倍。 如果准确性为100%,成本达到先前说明的限制或没有将任何样本添加到标记的数据集中,则算法终止。 例子 设置: 数据集:10000个样本,3个类,每个类2个类,3个信息性特征。 最大限度。 迭代次数:100 数据集中未标记数据的

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明