Machine learning is a subfield of computer science that is concerned with building algorithms which, to be useful, rely on a collection of examples of some phenomenon. These examples can come from nature, be handcrafted by humans or generated by another algorithm. Machine learning can also be defined as the process of solving a practical problem by 1) gathering a dataset, and 2) algorithmically building a statistical model based on that dataset. That statistical model is assumed to be used somehow to solve the practical problem. To save keystrokes, I use the terms “learning” and “machine learning” interchangeably
2022-11-29 14:38:31 16.76MB ML 机器学习
1
最新(2013年春)一期的Coursera 机器学习课程 Machine Learning Andrew Ng Stanford 讲义合集 lectures 是我在跟进课程学习时候下载的,非常好的课程和讲解,的确很有收获。 希望能够对大家有用。
2022-11-29 09:22:19 35.15MB 机器学习 Machine Learning AndrewNg
1
在本文中,我们将ResNet模型转换为Core ML格式。
2022-11-28 16:12:53 518KB Python iOS machine-learning neural-network
1
面部对齐 通过回归树进行人脸对齐 预要求 Visual Studio 2012+ 和 OpenCV 安装在 C:/opencv
1
Kaggle National Datascience Bowl 2017第二名 这是我在Kaggle.com主办的第二名解决方案中我的源代码。 有关该方法的文档,请访问: ://juliandewit.github.io/kaggle-ndsb2017/ 请注意,这是我的代码部分。 我的队友Daniel Hammack的工作可以在以下位置找到: : 依赖关系和数据 该解决方案是使用Keras和Windows 64位上的tensorflow后端构建的。 接下来,我使用了scikit-learn,pydicom,simpleitk,beatifulsoup,opencv和XgBoost。
2022-11-26 21:51:05 65KB machine-learning deep-learning tensorflow keras
1
Keras可视化工具包 keras-vis是用于可视化和调试已训练的keras神经网络模型的高级工具包。 当前支持的可视化包括: 激活最大化 显着图 类激活图 默认情况下,所有可视化都支持N维图像输入。 即,它推广到模型的N维图像输入。 该工具包通过干净,易于使用和可扩展的界面将上述所有问题归纳为能量最小化问题。 与theano和tensorflow后端兼容,具有“ channels_first”,“ channels_last”数据格式。 快速链接 阅读位于的文档。 日语版为 。 加入闲暇来提问/讨论。 我们正在中跟踪新功能/任务。 如果您愿意帮助我们并提交PR,将非常乐意。 入门 在图像反向传播问题中,目标是生成使某些损失函数最小化的输入图像。 设置图像反向传播问题很容易。 定义加权损失函数 在中定义了各种有用的损失函数。 可以通过实现来定义自定义损失函数。 from vis . losses import ActivationMaximization from vis . regularizers import TotalVariation , LPNorm fil
2022-11-25 19:04:09 43.42MB visualization machine-learning theano deep-learning
1
FakeNewsCorpus:从精选的数据源列表中抓取的数百万条新闻报道的数据集
1
足球经理 使用数据和机器学习来分析足球运动员。 贡献者: 巴图拉普·雅尔辛 托马斯·麦卡塔夫(Thomas Mecattaf) 莫希什·查克拉瓦蒂(Mohnish Chakravarti) Description:我们几乎每天都在我们的xbox上玩FIFA职业模式。 在此项目中,我们使用基本的机器学习技术(例如线性回归,随机森林和神经网络)分析2015 / 16、2016 / 17、2017 / 18、2018 / 19赛季EPL玩家的游戏FIFA评分和实际表现网络。 有3个笔记本(一个用于抓取,一个用于基本数据分析,一个用于机器学习),以及3个HTML文件,它们更详细地解释了所有这些笔记本和我们的项目 进行此项目的一些动机是: 我们可以了解FIFA中的球员属性和等级吗? EA Sports不会发布有关球员排名和分配属性值的任何信息。 FIFA球员可以使用此回合为球队的每个职位
1
员工流失-原因和解释 留住人才与留住人才同等重要,而且可能会花更多的时间和金钱,这是因为花了一些时间和金钱来使某个工人适应您的环境和公司。 因此,我认为瞥一眼决定离开公司的工人的主要特征是我们值得的。 为了检查这一事实,我将使用位于Employee Attrition数据集,因为它包含专门为此用例收集的数据。 本研究中使用的版本也专门存储在文件夹data /中,因为网站上的文件可能会随着时间而变化,并且与此处所检查的版本不符。 档案结构 data / :分析中使用的数据集的版本。 doc / :由于具有嵌入式图形,因此使用HTML文档,并提供研究的结果和主要结论。 src / :项目中使用的代码,.Rmd格式。 参考
2022-11-23 20:08:46 1.75MB data-science machine-learning r ml
1
完善的机器学习:笔记,练习和Jupyter笔记本 在下面,您将找到补充第二版《机器学习精炼》(剑桥大学出版社出版)的一系列资源。 目录 小部件样本和我们的教学法 我们相信,只有对以下三个问题中的每一个回答都是肯定的,才能精通某种机器学习概念/主题。 Intuition你能用一个简单的图景描述这个想法吗? Mathematical derivation您可以用数学符号表达直觉并推导基础模型/成本函数吗? Implementation您可以在不使用高级库的情况下使用Python这样的编程语言对派生代码进行编码吗? Intuition comes first. 直观的飞跃先于知识的飞跃,因此,我们在书中包括了300多种彩色插图,这些彩色插图经过精心设计,可以直观地掌握技术概念。 这些插图中的许多是动画的快照,这些动画显示了某些算法的收敛性,某些模型从不完全拟合到过度拟合的演变等。可以使用动画(与静态图形相对)来最好地说明和理解此类概念。 您可以在此存储库中找到大量这样的动画-您也可以通过这些注释的原始Jupyter笔记本版本来修改自己。 这里只是几个例子: 交叉验证(回归)
1