Machine Learning Algorithms Giuseppe Bonaccorso July 2017 Build strong foundation for entering the world of machine learning and data science with the help of this comprehensive guide
2022-12-19 13:47:25 131KB 机器学习 算法
1
绍了凸优化,这是一个可以在计算机上高效解决的强大且易于处理的优化问题。本书的目标是帮助读者理解什么是凸优化,以及如何将其应用于更广泛的实际场景,特别是机器学习。
2022-12-18 18:28:10 11.07MB 机器学习
1
共有两个文件夹,一个是trainingDigits另外一个是testDigits。文件夹中包含手写数字的训练数据集
2022-12-18 16:39:11 723KB Machine_Learning Python
1
数据载体 DataVec是Apache 2.0许可的库,用于机器学习ETL(提取,转换,加载)操作。 DataVec的目的是将原始数据转换为可用的矢量格式,然后将其提供给机器学习算法。 通过向该存储库贡献代码,您同意根据Apache 2.0许可提供您的贡献。 为什么要使用DataVec? 数据处理有时会很混乱,我们认为它应该与高性能代数库(例如nd4j或Deeplearning4j)区分开。 DataVec使从业人员可以获取原始数据并快速生成符合开放标准的矢量化数据(svmLight等)。 开箱即用支持的当前输入数据类型: CSV数据 原始文本数据(推文,文本文档等) 图片资料 支持库 SVMLight MatLab(MAT)格式 JSON,XML,YAML,XML Datavec从许多Hadoop生态系统工具中汲取了灵感,尤其是通过Hadoop API访问磁盘上的数据(就像S
2022-12-17 18:04:45 24.28MB machine-learning formatter schema spark
1
python、numpy、pandas、jupyter、keras、matplotlib、pyspark、scikit-learn、scipy、seaborn的cheat sheet
2022-12-16 07:38:08 3.7MB deep learning
1
机器学习备忘单 该备忘单包含许多关于机器学习的经典方程式和图表,它们将帮助您快速回顾关于机器学习的知识和思想。 该备忘单还将吸引准备进行与机器学习相关的工作面试的人员。 下载PDF 如何编译 docker pull soulmachine/texlive docker run -it --rm -v $(pwd):/data -w /data soulmachine/texlive xelatex -synctex=1 --enable-write18 -interaction=nonstopmode machine-learning-cheat-sheet.tex LaTeX模板 本书采用。 如何在Windows上编译 安装 ,然后将其bin路径(例如D:\texlive\2012\bin\win32到PATH环境变量中。 安装 。 配置TeXstudio。 运行TeXstud
2022-12-16 07:37:11 4.24MB TeX
1
svm算法手写matlab代码机器学习 大家好, 我上传了我的机器学习在线课程作业,该课程由斯坦福大学的Andrew NJ教授教授。 所有代码都可以由MATLAB / Octave(4.4.0或更高版本)运行,并且为了提供有关每种练习的更多信息,需要准备一个文档文件。 最好先阅读一下并熟悉功能。 只需要运行以“ exNUM.m”命名的主函数,例如ex5.m 以下是每个练习的简要信息: HW1:线性回归。 在本练习中,我实现了线性回归方法,并看到了它在样本数据上的工作原理。 硬件2:逻辑回归。 在练习的第一部分,我建立了一个逻辑回归模型来预测学生是否被大学录取。 我使用线性决策边界对数据进行分类。 在练习的第二部分中,我实施了正则逻辑回归,以预测来自制造工厂的微芯片是否通过质量保证(QA)。 使用非线性决策边界和正则项。 HW3:神经网络的多类分类和实际使用。 在练习的第一部分中,我使用了逻辑回归的先前实现,并将其应用于“一对多”分类以识别手写数字(从0到9)。 最后,我获得了95%的训练集准确性。 在练习的下一部分中,我使用MPL神经网络库完成了先前的任务,令人惊讶的是准确性达到了97
2022-12-14 16:02:56 28.95MB 系统开源
1
机器学习是问题学习和决策的核心论证和人工方面分类。 因此,科学家们引入了机器学习,通常用于人工思维。 使人脑等各种活动自动化的重要方法是人工智能准备框架。 机器学习技术需要一个规划程序来自动获得对不同应用程序信息的搜索控制。 机器学习在机器人领域发挥着重要作用。 它有助于决策并提高机器效率。 机器学习在大量应用中得到应用。 正是智能系统的原理概念有助于巧妙地引入人工智能,也使人工智能非常先进。
2022-12-13 16:21:25 372KB Machine Learning Pattern
1
序数回归 序数回归涉及多标签数据,其中数据标签相对于彼此排序。 作为一名深度学习研究人员,我遇到了序数回归似乎合适的问题设置,但是我还没有找到序数回归方法的Tensorflow实现。 这是我在Tensorflow中建立序数回归方法的尝试,以便可以将其应用于我的研究。 序数阈值 截至目前,我还没有在Tensorflow中找到一种方法来强加有序阈值,因为通过反向传播将其作为模型的参数进行调整时,这些阈值仍然保持不变。 在此期间,我仅将阈值初始化为从特定范围内的均匀分布得出的排序的非递减随机向量。 这些阈值被视为一个常数。 我发现这严重妨碍了模型,但是确实允许模型训练。
1
ner_crf ner_crf是Jupyter笔记本,它使用 / 实现,使用条件随机字段(CRF)描述了命名实体识别(NER)。 依存关系 ner_crf用编写,因此在使用python3之前应下载最新版本的python3 。 可以从找到python的下载(建议使用3.5.1版)。 您还需要能够运行Jupyter Notebook(请参阅 )。 还需要以下python库来运行ner_crf笔记本:
2022-12-12 20:26:51 961KB python nlp machine-learning crf
1