keras-vis:用于keras的神经网络可视化工具包

上传者: 42134537 | 上传时间: 2022-11-25 19:04:09 | 文件大小: 43.42MB | 文件类型: ZIP
Keras可视化工具包 keras-vis是用于可视化和调试已训练的keras神经网络模型的高级工具包。 当前支持的可视化包括: 激活最大化 显着图 类激活图 默认情况下,所有可视化都支持N维图像输入。 即,它推广到模型的N维图像输入。 该工具包通过干净,易于使用和可扩展的界面将上述所有问题归纳为能量最小化问题。 与theano和tensorflow后端兼容,具有“ channels_first”,“ channels_last”数据格式。 快速链接 阅读位于的文档。 日语版为 。 加入闲暇来提问/讨论。 我们正在中跟踪新功能/任务。 如果您愿意帮助我们并提交PR,将非常乐意。 入门 在图像反向传播问题中,目标是生成使某些损失函数最小化的输入图像。 设置图像反向传播问题很容易。 定义加权损失函数 在中定义了各种有用的损失函数。 可以通过实现来定义自定义损失函数。 from vis . losses import ActivationMaximization from vis . regularizers import TotalVariation , LPNorm fil

文件下载

资源详情

[{"title":"( 72 个子文件 43.42MB ) keras-vis:用于keras的神经网络可视化工具包","children":[{"title":"keras-vis-master","children":[{"title":"MANIFEST.in <span style='color:#111;'> 44B </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 61B </span>","children":null,"spread":false},{"title":"ISSUE_TEMPLATE.md <span style='color:#111;'> 678B </span>","children":null,"spread":false},{"title":"images","children":[{"title":"opt_progress.gif <span style='color:#111;'> 13.48MB </span>","children":null,"spread":false},{"title":"attention_vis","children":[{"title":"grad-cam.png <span style='color:#111;'> 529.25KB </span>","children":null,"spread":false},{"title":"cover.png <span style='color:#111;'> 532.38KB </span>","children":null,"spread":false},{"title":"saliency_map.png <span style='color:#111;'> 118.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"conv_vis","children":[{"title":"block4_conv3_filters.jpg <span style='color:#111;'> 125.42KB </span>","children":null,"spread":false},{"title":"block5_conv3_filters_no_tv.jpg <span style='color:#111;'> 183.95KB </span>","children":null,"spread":false},{"title":"block1_conv2_filters.jpg <span style='color:#111;'> 152.26KB </span>","children":null,"spread":false},{"title":"block3_conv3_filters.jpg <span style='color:#111;'> 144.40KB </span>","children":null,"spread":false},{"title":"filter_67.png <span style='color:#111;'> 73.91KB </span>","children":null,"spread":false},{"title":"cover.jpg <span style='color:#111;'> 125.42KB </span>","children":null,"spread":false},{"title":"block5_conv3_filters.jpg <span style='color:#111;'> 80.32KB </span>","children":null,"spread":false},{"title":"block2_conv2_filters.jpg <span style='color:#111;'> 109.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"dense_vis","children":[{"title":"random_imagenet.png <span style='color:#111;'> 819.39KB </span>","children":null,"spread":false},{"title":"random_imagenet_no_tv.png <span style='color:#111;'> 1001.92KB </span>","children":null,"spread":false},{"title":"cover.png <span style='color:#111;'> 219.74KB </span>","children":null,"spread":false},{"title":"ouzel_vis.png <span style='color:#111;'> 219.74KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"examples","children":[{"title":"vggnet","children":[{"title":"attention.ipynb <span style='color:#111;'> 1.96MB </span>","children":null,"spread":false},{"title":"activation_maximization.ipynb <span style='color:#111;'> 23.66MB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"ouzel1.jpg <span style='color:#111;'> 127.92KB </span>","children":null,"spread":false},{"title":"ouzel2.jpg <span style='color:#111;'> 143.96KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"resnet","children":[{"title":"attention.ipynb <span style='color:#111;'> 1.98MB </span>","children":null,"spread":false}],"spread":true},{"title":"mnist","children":[{"title":"attention.ipynb <span style='color:#111;'> 377.97KB </span>","children":null,"spread":false},{"title":"activation_maximization.ipynb <span style='color:#111;'> 411.46KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"CONTRIBUTING.md <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":".travis.yml <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"pytest.ini <span style='color:#111;'> 440B </span>","children":null,"spread":false},{"title":"vis","children":[{"title":"callbacks.py <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"utils.py <span style='color:#111;'> 10.90KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test_utils.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"input_modifiers.py <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"grad_modifiers.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"regularizers.py <span style='color:#111;'> 4.09KB </span>","children":null,"spread":false},{"title":"backend","children":[{"title":"theano_backend.py <span style='color:#111;'> 719B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 281B </span>","children":null,"spread":false},{"title":"tensorflow_backend.py <span style='color:#111;'> 4.30KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"optimizer.py <span style='color:#111;'> 8.40KB </span>","children":null,"spread":false},{"title":"losses.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"backprop_modifiers.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"visualization","children":[{"title":"activation_maximization.py <span style='color:#111;'> 6.09KB </span>","children":null,"spread":false},{"title":"saliency.py <span style='color:#111;'> 13.31KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 67B </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 805B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.94KB </span>","children":null,"spread":false},{"title":"resources","children":[{"title":"imagenet_class_index.json <span style='color:#111;'> 34.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"docs","children":[{"title":"update_docs.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"md_autogen.py <span style='color:#111;'> 13.73KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"mkdocs.yml <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 518B </span>","children":null,"spread":false},{"title":"templates","children":[{"title":"visualizations","children":[{"title":"saliency.md <span style='color:#111;'> 5.14KB </span>","children":null,"spread":false},{"title":"activation_maximization.md <span style='color:#111;'> 4.91KB </span>","children":null,"spread":false},{"title":"class_activation_maps.md <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false}],"spread":false},{"title":"css","children":[{"title":"extras.css <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false},{"title":"tests","children":[{"title":"vis","children":[{"title":"utils","children":[{"title":"test_utils.py <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false}],"spread":false},{"title":"backend","children":[{"title":"test_backend.py <span style='color:#111;'> 5.98KB </span>","children":null,"spread":false}],"spread":false},{"title":"test_optimizer.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"visualization","children":[{"title":"test_saliency.py <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false},{"title":"applications","children":[{"title":"self_driving","children":[{"title":"weights.hdf5 <span style='color:#111;'> 4.69MB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"left.png <span style='color:#111;'> 13.55KB </span>","children":null,"spread":false},{"title":"blank.png <span style='color:#111;'> 7.20KB </span>","children":null,"spread":false},{"title":"straight.png <span style='color:#111;'> 18.53KB </span>","children":null,"spread":false}],"spread":false},{"title":"model.py <span style='color:#111;'> 845B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 271B </span>","children":null,"spread":false},{"title":"visualize_attention.ipynb <span style='color:#111;'> 276.64KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":".gitignore <span style='color:#111;'> 151B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明