Twitter爬虫 描述 Twitter的API限制您查询用户的最新3200条推文。 这是一个痛苦的屁股。 但是,我们可以使用Selenium并进行一些网络抓取来规避此限制。 我们可以在Twitter上查询用户的整个时间,找到他们每个推文的ID。 从那里,我们可以使用tweepy API查询与每个tweet相关的完整元数据。 您可以通过更改scrape.py顶部的变量METADATA_LIST来调整收集哪些元数据。 就我个人而言,我只是收集文本来训练模型,因此,我只关心full_text字段,除了该推文是否为转推文。 我在scrape.py顶部列出了所有可用的tweet属性,以便您可以随意
1
贝特维兹 BertViz是用于可视化Transformer模型中注意力的工具,支持库中的所有模型(BERT,GPT-2,XLNet,RoBERTa,XLM,CTRL等)。 它扩展了的以及的库。 资源资源 :joystick_selector: :writing_hand_selector: :open_book: 总览 正面图 头部视图可视化给定转换器层中一个或多个注意头产生的注意模式。 它基于出色的。 尝试此 其中已预加载了头部视图。 头部视图支持Transformers库中的所有模型,包括: BERT: GPT-2: XLNet: RoBERTa: XLM: 阿尔伯特: DistilBERT: (和别的) 模型视图 模型视图提供了对模型所有层和头部的关注的鸟瞰图。 试用此 其中已预加载了模型视图。 模型视图支持Transformers库中的所有模型,包括: BERT: GPT2: XLNet: RoBERTa: XLM: 阿尔伯特: DistilBERT: (和别的) 神经元视图 神经元视图将查询和键向量中的单个神经元可视化,并
1
PyTextRank PyTextRank是一个Python实现TextRank作为,用于: 从文本文档中提取排名靠前的短语 对文本文档进行低成本的提取摘要 帮助推断从非结构化文本到结构化数据的链接 背景 与的更普遍用法相比, PyTextRank的目标之一是(最终)为提供支持。 这些方法可以互补的方式一起使用,以改善总体结果。 图算法的引入-特别是-为集成其他技术以增强执行的自然语言工作提供了更加灵活和强大的基础。 此处的实体链接方面仍然是计划中的后续版本,正在进行中。 在内部PyTextRank构造一个引理图以表示候选短语(例如,无法识别的实体)及其支持语言之间的链接。 一般而言,在短语排名之前丰富该图的任何方法都将倾向于改善结果。 丰富引理图的可能方法包括共和,以及在一般情况下利用知识图。 例如, 和都提供了推断实体之间链接的方法,并且可以将特定目的的知识图应用于特定的用例。 即使在文本中链接不是明确的情况下,这些也可以帮助丰富引理图。 考虑一段用不同的句子提到cats和kittens的段落:这两个名词之间存在隐含的语义关系,因为外kitten是外cat -因此可以在它
1
句子 这个存储库包含一个 R 包,它是一个围绕句子 C++ 库的 Rcpp 包装器 句子是一个无监督的分词器,它允许使用字节对编码和 Unigrams 执行文本分词 它基于论文SentencePiece: A simple and languagedependent subword tokenizer and detokenizer for Neural Text Processing [ ] 句子 C++ 代码可从。 这个包目前包含版本 v0.1.84 这个 R 包具有与 R 包类似的功能 特征 R 包允许您 构建字节对编码 (BPE)、Unigram、Char 或 Word 模型 应用模型对文本进行编码 应用模型将 id 解码回文本 下载基于维基百科的预训练句子模型 安装 对于普通用户,从本地 CRAN 镜像install.packages("sentencepiece")安装包
1
BERT的最好的朋友。 安装 Ernie需要Python 3.6或更高版本。 pip install ernie 微调 句子分类 from ernie import SentenceClassifier , Models import pandas as pd tuples = [( "This is a positive example. I'm very happy today." , 1 ), ( "This is a negative sentence. Everything was wrong today at work." , 0 )] df = pd . D
2021-05-28 15:48:32 201KB nlp natural-language-processing tensorflow keras
1
书籍描述: 使用Python使用问题解决方法实现自然语言处理应用程序。这本书有许多编码练习,将帮助您快速部署自然语言处理技术,如文本分类、部分语音识别、主题建模、文本摘要、文本生成、实体提取和情感分析。 自然语言处理配方首先提供清洗和预处理文本数据的解决方案,以及使用高级算法分析文本数据的方法。您将看到文本语义和句法分析的实际应用,以及涉及文本规范化、高级预处理、pos标记和情感分析的复杂自然语言处理方法。您还将学习机器学习和自然语言处理中的深度学习的各种应用。 通过使用本书中的配方,您将拥有一个解决方案工具箱,可以应用于现实世界中您自己的项目,使您的开发时间更快、更高效。
2021-05-12 19:25:44 9.9MB NLP 自然语言处理 Apress
1
AG新闻分类使用机器学习 新闻分类数据集数据源: : 客观的 新闻分类数据集由“世界”,“体育”,“商业”和“科学”类别的新闻文章组成 给定标题和描述,我们必须确定它属于哪个新闻文章类别。 机器学习问题的类型: 我们必须根据给定的信息预测新闻报道,因此它是多类分类问题 基本概述 数据形状:Train.csv + Test.csv = 120000 + 7600 = 127600行。 Data.columns:类索引,标题,描述 Data.info():独立:标题,描述--->对象,从属:类标签-> Int64 机器学习问题的类型 绩效指标 由于这是多类分类问题,因此我们将使用: 1:多类混淆矩阵 2:精确,调出,F1-Score 3:准确性得分,错误得分 解决新闻分类问题的步骤: 第1部分 1:加载数据集----> .csv格式 2:执行探索性数据分析: a] Check
1
语音情感分析仪 基于长期短期记忆(LSTM)网络的语音情感分析器。 该模型可以有效地分析愤怒,厌恶,恐惧,幸福,中立,悲伤和惊奇的7种基本情绪。 在多伦多情感言语集(TESS)数据集上进行了培训。 这对模型的可推广性造成了一些固有的限制。 由于TESS目前只有两名女性配音演员,并且在录音室中进行录制,因此该模型无法与直接制作相提并论。 该代码在jupyternotebook文件中,并且记录充分。
1
BERTScore 论文(ICLR 2020)中介绍了自动评估指标。 新闻: 更新至版本0.3.7 与Huggingface的变压器版本> = 4.0.0兼容。 感谢公共贡献者( , , )。 如果您想在COCO字幕数据集上复制我们的实验,请参见 。 更新至版本0.3.6 支持自定义基准文件 选项--rescale-with-baseline更改为--rescale_with_baseline以便与其他选项一致。 更新至版本0.3.5 与Huggingface的变形金刚> = v3.0.0和次要修复程序( , , )兼容 与效率相关的几项改进( , ) 更新至版本0.3.4 立即与变形金刚v2.11.0兼容(#58) 对于中国人来说,下载预先训练的体重可能很慢。 我们在百度盘上提供了一些模型的副本。 密码:dhe5 密码:jvk7 cased密码:yx3q 库在其度量标准集合中包括BERTScore。 更新至版本0.3.3 使用空字符串修复错误。 支持6种模型和24种较小的模型。 新增了一个用于保持WMT16英制上不同模型的性能(即
1
网络视觉 NeAt(Neural Attention)Vision是一种可视化工具,用于自然语言处理(NLP)任务的深度学习模型的注意力机制。 产品特点 可视化注意力得分,有很多选择。 将可视化文件导出为SVG格式。 如果要在学术论文中使用可视化效果,这将非常方便。 但是,您可能必须将SVG转换为PDF。 可视化模型预测。 显示类的后验分布,回归任务中的错误等。 对于调试模型和检查其行为很有用。 支持分类,多标签分类和回归。 进行了整齐的可视化,以可视化自然语言处理(任务)任务的注意机制的权重。 目前,整洁的视觉只支持可视化的自我注意机制,在句子级别上执行以下任务: 回归:预测单个连
2021-05-04 19:04:07 13.58MB visualization nlp natural-language-processing vuejs
1