CA-Net:用于可解释医学图像分割的综合注意力卷积神经网络 该存储库提供“ CA-Net:可解释医学图像分割的综合注意力卷积神经网络”的代码。 现在可以在上我们的工作。 接受了我们的工作。 图1. CA-Net的结构。 图2.皮肤病变分割。 图3.胎盘和胎脑分割。 要求条件 一些重要的必需软件包包括: 版本> = 0.4.1。 智慧 Python == 3.7 一些基本的python软件包,例如Numpy。 按照官方的指导安装 。 用法 用于皮肤病变分割 首先,您可以在下载数据集。 我们仅使用了ISIC 2018 task1训练数据集,要对数据集进行预处理并另存为“ .npy”,请运行: python isic_preprocess.py 为了进行5倍交叉验证,请将预处理数据分成5倍并保存其文件名。 跑步: python create_folder.py 要在ISI
2023-02-22 20:42:26 36.8MB attention-mechanism Python
1
本文于译文,卷积神经网络是一种识别和理解图像的神经网络。本文将从不同的层次来介绍卷积神经网络。本文将继续为你介绍关于卷积神经网络的知识。为了保持文章的简洁性和全面性我将为你提供研究论文的链接,里边会有更为详细的解释。让我们看看转换层,还记得滤波器、接受域和卷积吗?现在我们可以改变两个主要参数来修改每层的运行状态。在选择滤波器大小之后,还要选择宽度和填充。用宽度来控制滤波器如何在输入量的上下范围内进行卷积。例如,一个7*7的输入量,一个3*3的滤波器(忽略第三维度的简单性),宽度为1。看看你是否能尽力猜出随着宽度增加到2,输出量会发生什么变化。因此,正如你所看到的那样,接受域现在在两个单元之间来
2023-02-22 15:16:28 247KB 手把手教你理解卷积神经网络
1
吴恩达改善深层神经网络:卷积神经网络,序列模型作业,因为太大了就放百度云了,不能下请私信我 1971514199@qq.com
2023-02-21 13:40:37 174B deeplearning
1
为了提高脉搏波识别的准确率,提出改进的深度融合神经网络MIRNet2.首先,经过主波提取、划分周期和制作hdf5数据集等,获得Caffe可处理的数据集.其次,提出由Inception模块和残差模块构成的融合网络Inception-ResNet (IRNet),包含IRNet1、IRNet2和IRNet3.在此基础上,改进Inception模块、残差模块和池化模块,构造Modified Inception-ResNet (MIRNet),包含MIRNet1和MIRNet2.与本文其它神经网络相比,MIRNet2的分类性能最好,特异性、灵敏度和准确率分别达到87.85%、88.05%和87.84%,参数量和运算量也少于IRNet3.
2023-02-20 16:39:40 2.08MB 脉搏波 识别 卷积神经网络 Google
1
中文新闻分类模型,利用TextCNN模型进行训练,TextCNN的主要流程是:获取文本的局部特征:通过不同的卷积核尺寸来提取文本的N-Gram信息,然后通过最大池化操作来突出各个卷积操作提取的最关键信息,拼接后通过全连接层对特征进行组合,最后通过交叉熵损失函数来训练模型。
2023-02-19 17:06:30 48.44MB TextCNN 文本分类
1
基于卷积神经网络的人脸识别. 完整代码 可直接运行 我们整个人脸识别系统总共分为 5 个部分:图像采集、人脸检测、数据整理、卷积神经网络的构建和训练、人脸实时识别。 3.1 图像采集 在卷积神经网络训练之前,首先得有数据。我们通过 opencv 调用电脑摄像头拍取约 10 个人的人脸照片,每人拍 600 张。为拍照的 10 个人分别建立一个文件夹,并将其所拍照片统一放置该文件夹中,文件夹以起名字拼音命名,最后将这 10 个文件夹统一放置于一个总文件夹中,并以“faceImages”命名。示意图如下:
2023-02-19 11:14:51 2.2MB 卷积神经网络 人脸识别. python
1
原始的U-Net采用跳跃结构结合高低层的图像信息, 使得U-Net模型有良好的分割效果, 但是分割结果在宫颈细胞核边缘依然存在分割欠佳、过分割和欠分割等不足. 由此提出了改进型U-Net网络图像分割方法. 首先将稠密连接的DenseNet引入U-Net的编码器部分, 以解决编码器部分相对简单, 不能提取相对抽象的高层语义特征. 然后对二元交叉熵损失函数中的宫颈细胞核和背景给予不同的权重, 使网络更加注重细胞核特征的学习. 最后在池化操作过程中, 对池化域内的像素值分配合理的权值, 解决池化层丢失信息的问题. 实验证明, 改进型U-Net网络使宫颈细胞核分割效果更好, 模型也越鲁棒, 过分割和欠分割比率也越少. 显然, 改进型U-Net是更有效的图像分割方法.
1
车辆识别方法计算量大,提取的特征复杂,且传统神经网络利用端层特征进行分类导致特征不全面,为此提出了一种结合卷积神经网络(CNN)多层特征和支持向量机(SVM)的车辆识别方法。该方法在传统AlexNet模型基础上构建卷积神经网络模型,通过分析参数变化对测试正确率的影响得到最优车辆识别模型;提取多层车辆特征图,采用串行融合方法与主成分分析降维技术将其构成一个具有多属性的车辆特征向量,以增强特征全面性,减少计算量;利用SVM分类器代替CNN的输出层实现车辆识别,以提高模型泛化能力与纠错能力。实验结果表明,相比传统方法,所提方法在分类精度和识别速度方面都有显著提高,且具有良好的稳健性。
2023-02-17 10:47:50 3.21MB 图像处理 卷积神经 车辆识别 改进AlexN
1
本资源为深度学习课程设计 含课程设计完整过程的数据集以及实验报告 可供参考 由matlab代码编写构建双层CNN卷积神经网络识别Minist的手写体数据,其中将不断改进的代码跟另外使用工具函数编写的另一个CNN程序结果比较,有一个较为直观的运行效果对比。能够很好的看出程序设计的优劣。使用的是双层卷积神经网络,后向传播用的是随机梯度下降及其优化版本。 适用于CNN初学者以及希望更进一步的学习者。 dataset是MNIST。这里层的概念是指convolution+pooling 函数说明: read_label和read_image分别为读取标签和图像数据点的函数 convolve是实现卷积的函数,pool是实现池化的函数 SGD_MSGD是主函数,把minibatch设为1就是SGD,大于1就是MSGD OPTIMAL是优化版的主函数,OPTIMAL_FINALE是最终优化版的主函数,toolbox是用工具箱函数写的CNN,用于对比之前函数的运行效果。 SGD_MSGD,OPTIMAL,OPTIMAL_FINALE,toolbox都可以直接运行得到答案
1
这是我自己设计的一个人脸识别系统的课题,基于Python语言研发了人脸识别管理系统,并在Pycharm平台完成主要功能模块的分析与设计,在摄像头采集到完整人脸信息的同时,对人员的身份进行认证和管理。本文所设计的人脸识别系统一方面可以实现人员的安全认证功能,还能够给重要场所的人员管理提供安全保障,测试结果表明:该系统能够准确识别人脸信息,并显示当前人员的录入时名字,而没有录入的人脸显示unknown,为有效解决人员管理问题提供了参考。使得人员安全管理系统具备了更高的实用价值,有着巨大市场潜力和应用前景。以下是重要内容阐述: 1、人脸识别部分主要是依靠人脸特征提取来实现; 2、摄像头捕获人脸后,会进行图像预处理,包括噪声处理、光照预处理和几何预处理; 3、采用卷积神经网络为人脸识别算法; 4、基于Python和Pycharm平台来实现系统设计; 5、通过CNN训练发现,能够对人脸进行准确识别,识别率高达97%;
2023-02-15 12:48:36 1.4MB python pycharm 卷积神经网络 图像处理