针对煤矿井下探水作业监工人员通过观看视频来监控卸杆作业的方式存在效率低下且极易出错的问题,提出利用三维卷积神经网络(3DCNN)模型对探水作业中的卸杆动作进行识别。3DCNN模型使用3D卷积层自动完成动作特征提取,通过3D池化层对运动特征进行降维,通过Softmax分类处理来识别卸杆动作,并使用批量归一化层提高模型的收敛速度和识别准确率。采用3DCNN模型对卸杆动作进行识别时,首先对数据集进行预处理,从每段视频中均匀抽取几帧图像作为某动作的代表,并降低分辨率;然后采用训练集对3DCNN模型进行训练,并保存训练好的权重文件;最后采用训练好的3DCNN模型对测试集进行测试,得出分类结果。实验结果表明,设置采样帧数为10帧、分辨率为32×32、学习率为0.000 1,3DCNN模型对卸杆动作的识别准确率最高可达98.86%。
1
使用3DCNN和卷积LSTM进行手势识别学习时空特征
2021-12-30 09:46:41 690KB 研究论文
1
事前预测和识别可疑活动是非常有益的,因为它可以增强对视频监控摄像机的保护。 在执行之前检测和预测人类的动作具有多种用途,例如自动机器人,监视和医疗保健。 本文的主要重点是监视视频中人为行为的自动识别。 3DCNN(3维卷积神经网络)基于3D卷积,在那里捕获了多个相邻帧中编码的运动信息。 3DCNN与Long short team memory(LSTM)和双向LSTM相结合,可根据对视频流中事件的以往观察来预测异常事件。 可以看出,与带有双向LSTM的3DCNN相比,带有LSTM的3DCNN导致精度提高。 实验是在UCF犯罪数据集上进行的。
2021-12-07 16:08:27 649KB 3DCNN Bi-Directional LSTM LSTM
1
为视频中的动作识别建立一个简单的模型 只是为了展示如何在Keras中使用Conv3d。 在视频动作识别中使用KTH数据集。 如何建立更好的模型和调整参数取决于您。
2021-09-20 10:07:34 44.7MB Python
1
论文
2021-08-03 09:49:56 2.01MB 3DCNN
1
Tensorflow 3D CNN
2019-12-21 21:06:43 5KB 3DCNN tensorflow
1