高斯过程机器学习方面的专著,英文版. have fine and enjoy it
2025-12-22 11:21:12 3.88MB 高斯过程 机器学习
1
随着人工智能技术的不断发展,深度学习在计算机视觉领域的应用变得越来越广泛。其中,halcon作为一款功能强大的机器视觉软件,其提供的深度学习工具可以帮助用户进行图像标注和模型训练。而YOLO(You Only Look Once)作为一种高效的目标检测算法,以其速度快、准确率高的特点受到了广泛的关注。本文将介绍如何将halcon深度学习工具的标注数据转换成YOLO可以使用的格式,以便直接用于训练,进而提升图像识别与检测的效率和精度。 了解halcon的深度学习工具对于数据标注的支持是非常必要的。halcon的标注数据通常是存储为.hdict格式的文件,这种文件包含了图像数据及其对应的标注信息。为了将这些数据转换为YOLO训练所需的格式,halcon提供了相关的代码实现,即Trans_Halcon_to_python.hdev,该脚本能够解析.hdict文件,并将其转换为YOLO所支持的数据格式。 在转换过程中,halcon代码需要处理不同类型的图像任务,比如语义分割、实例分割等。语义分割是对图像中的每个像素进行分类,而实例分割则是在语义分割的基础上进一步区分同一类别的不同实例。在本次数据转换中,提供了多个具有代表性的深度学习任务实例文件,如针对pill bags(药片袋)和screws(螺丝)的目标检测与定位(Object Detection)任务,以及对水果进行分类(Classification)和对药片袋进行实例分割(Instance Segmentation)的案例。 这些.hdict文件包含了训练模型所需的关键信息,例如特征点的坐标、类别标签、目标区域的形状和尺寸等。转换代码的作用是读取这些信息,并将其转换为YOLO训练框架可以识别的标注格式。通常,YOLO使用一种特定的文本格式来表示目标的边界框和类别信息,格式通常为文本文件,每行对应一个目标,包含五个值:类别索引、中心点x坐标、中心点y坐标、宽度、高度。 转换后的数据将包括:训练图像文件、标注信息文件和配置文件(如coco128)。其中,coco128是指使用COCO数据集格式转换得到的128×128分辨率的图像,这有助于在数据转换过程中维持数据的统一性和标准化。 转换后的数据可以直接用于YOLO模型的训练。用户可以按照YOLO的训练流程,设置好网络架构、损失函数、优化算法等参数,然后进行模型的训练。值得注意的是,在进行数据转换时,还需考虑数据集的划分,即将数据集分为训练集、验证集和测试集,以保证训练出的模型具有良好的泛化能力。 此外,针对不同的深度学习任务类型,转换代码可能需要做出相应的调整。例如,对于语义分割任务,每个像素点的类别标签都需要转换为YOLO的标注格式;而对于实例分割任务,则需要识别出每个独立实例的轮廓,并转换为相应的边界框信息。 将halcon深度学习工具标注的数据转换为YOLO训练格式,是深度学习图像处理中的一个重要环节。这一过程不仅涉及到了数据格式的转换,还包括了对不同图像任务处理策略的理解。通过合理的转换,可以有效地利用halcon在视觉数据处理方面的优势,结合YOLO在目标检测领域的高效性能,从而提高模型训练的效率和目标识别的准确性。
2025-12-20 23:49:12 33.66MB halcon yolov DeepLearning 数据转换
1
嗨,大家好,这个资料库包含脚本的源代码,用于检测视频/摄像机框架中的汽车,然后在它们周围绘制矩形框。 用于检测汽车和边界框坐标的ML算法是一种预训练的级联模型。 全文在哪里? 该项目的完整文章最初发布在上,文章标题 入门 首先,我们必须克隆项目存储库或下载项目zip,然后将其解压缩。 git clone https://github.com/Kalebu/Real-time-Vehicle-Dection-Python cd Real-time-Vehicle-Dection-Python Real-time-Vehicle-Dection-Python - > 依存关系 现在,一旦我们在本地目录中有了项目存储库,现在就可以安装运行脚本所需的依赖项 pip install opencv-python 范例影片 我们在该项目中使用的示例视频是 ,它将在您下载或克隆存储库时出现,以加载具
2025-12-17 14:53:27 2.76MB python data-science machine-learning article
1
计算机视觉注释工具(CVAT) CVAT是用于计算机视觉的免费,在线,交互式视频和图像注释工具。 我们的团队正在使用它来注释数百万个具有不同属性的对象。 许多UI和UX决策都是基于专业数据注释团队的反馈。 在线尝试 。 文献资料 截屏 支持的注释格式 单击“上传注释”和“转储注释”按钮后,可以选择格式。 数据集框架允许通过其命令行工具和Python库进行其他数据集转换。 有关支持的格式的更多信息,请参阅。 注释格式 进口 出口 X X X X X X X 分割蒙版 X X X X X X X X X X X X X X X X X X X X X X X X 深度学习无服务器功能,用于自动标记 名称 类型 框架 中央处理器 显卡 互动者 OpenVINO X 探测器 OpenVINO X 探测器 OpenVINO X 探测器
2025-12-10 22:26:23 24.77MB computer-vision deep-learning annotation tensorflow
1
多值神经元的CR-梯度学习算法的收敛性,徐东坡,梁爽,基于CR微分理论,我们提出一个CR梯度学习算法用于训练多值神经元模型。在训练样本是$k$-可分的条件下,我们证明了所提出的新学习算法�
2025-12-09 09:11:19 466KB 首发论文
1
四、 实验程序流程图 五、 实验步骤 1、Proteus 仿真 a.在 Proteus 中打开设计文档“多位十六进制加法运算.DSN”; b.单步运行,打开调试窗口进行调试。 参考程序: CODE SEGMENT ASSUME CS:CODE,DS:DATA BEG: MOV AX,DATA MOV DS,AX MOV SI,OFFSET NUM1 MOV AX,0 开始 N1+N2 N1+N2+N3 结束
2025-11-29 12:35:21 1.03MB proteus 8086
1
Through exposure to the news and social media, you are probably aware of the fact that machine learning has become one of the most exciting technologies of our time and age. Large companies, such as Google, Facebook, Apple, Amazon, and IBM, heavily invest in machine learning research and applications for good reasons. While it may seem that machine learning has become the buzzword of our time and age, it is certainly not a fad. This exciting field opens the way to new possibilities and has become indispensable to our daily lives. This is evident in talking to the voice assistant on our smartphones, recommending the right product for our customers, preventing credit card fraud, filtering out spam from our email inboxes, detecting and diagnosing medical diseases, the list goes on and on. If you want to become a machine learning practitioner, a better problem solver, or maybe even consider a career in machine learning research, then this book is for you. However, for a novice, the theoretical concepts behind machine learning can be quite overwhelming. Many practical books have been published in recent years that will help you get started in machine learning by implementing powerful learning algorithms. Getting exposed to practical code examples and working through example applications of machine learning are a great way to dive into this field. Concrete examples help illustrate the broader concepts by putting the learned material directly into action. However, remember that with great power comes great responsibility! In addition to offering a hands-on experience with machine learning using the Python programming languages and Python-based machine learning libraries, this book introduces the mathematical concepts behind machine learning algorithms, which is essential for using machine learning successfully. Thus, this book is different from a purely practical book; it is a book that discusses the necessary details regarding machine learning concepts and offers intuitive yet informative explanations of how machine learning algorithms work, how to use them, and most importantly, how to avoid the most common pitfalls. Currently, if you type "machine learning" as a search term in Google Scholar, it returns an overwhelmingly large number of publications—1,800,000. Of course, we cannot discuss the nitty-gritty of all the different algorithms and applications that have emerged in the last 60 years. However, in this book, we will embark on an exciting journey that covers all the essential topics and concepts to give you a head start in this field. If you find that your thirst for knowledge is not satisfied, this book references many useful resources that can be used to follow up on the essential breakthroughs in this field. If you have already studied machine learning theory in detail, this book will show you how to put your knowledge into practice. If you have used machine learning techniques before and want to gain more insight into how machine learning actually works, this book is for you. Don't worry if you are completely new to the machine learning field; you have even more reason to be excited. Here is a promise that machine learning will change the way you think about the problems you want to solve and will show you how to tackle them by unlocking the power of data. Before we dive deeper into the machine learning field, let's answer your most important question, "Why Python?" The answer is simple: it is powerful yet very accessible. Python has become the most popular programming language for data science because it allows us to forget about the tedious parts of programming and offers us an environment where we can quickly jot down our ideas and put concepts directly into action. We, the authors, can truly say that the study of machine learning has made us better scientists, thinkers, and problem solvers. In this book, we want to share this knowledge with you. Knowledge is gained by learning. The key is our enthusiasm, and the real mastery of skills can only be achieved by practice. The road ahead may be bumpy on occasions and some topics may be more challenging than others, but we hope that you will embrace this opportunity and focus on the reward. Remember that we are on this journey together, and throughout this book, we will add many powerful techniques to your arsenal that will help us solve even the toughest problems the data-driven way.
2025-11-25 01:59:33 10.6MB TensorFlow Python 机器学习
1
压实、采摘和种植 (CPG) 这是 CPG 的官方 Pytorch 实现——一种用于对象分类的终身学习算法。 有关CPG的详细信息,请参阅论文《 ( , ) 该代码仅供学术研究使用。 如需商业用途,请联系教授( )。 基准测试 施引论文 如果这些代码有助于您的研究,请引用以下论文: @inproceedings{hung2019compacting, title={Compacting, Picking and Growing for Unforgetting Continual Learning}, author={Hung, Ching-Yi and Tu, Cheng-Hao and Wu, Cheng-En and Chen, Chien-Hung and Chan, Yi-Ming and Chen, Chu-Song}, booktitle={Advance
1
UofG_PGT_IDSS 该存储库包含用于实践从UofG的MSc计算科学的PGT学习过程中从数据科学与系统概论课程获得的知识的代码。 请注意,该代码是根据。 注意力 可以在Visual Studio代码(如果支持)中打开和编辑IPYNB文件。 到2021年3月31日,使用代码编辑器(版本:1.55.0)看起来一切都很好。 作为一种选择,您还可以在Anaconda中使用Jupyter Notebook。 下表列出了开发中使用的主要软件包。 姓名 版本 Python 3.8.8 1.0 1.0 matplotlib 3.3.4 麻木 1.20.1 大熊猫 1.2.3 科学的 1.6.1
2025-11-10 22:36:39 122.23MB data-science python3 learning-exercise JupyterNotebook
1
DeepBGC:生物合成基因簇的检测和分类 DeepBGC使用深度学习来检测细菌和真菌基因组中的BGC。 DeepBGC使用双向长期短期记忆递归神经网络和Pfam蛋白域的word2vec样载体嵌入。 使用随机森林分类器预测产品类别和检测到的BGC的活性。 :pushpin: 消息 :pushpin: DeepBGC 0.1.23:预测BGCs现在可以在antiSMASH使用JSON输出文件被上传用于可视化 根据以下说明,照常安装和运行DeepBGC 上传antismash.json从DeepBGC输出文件夹使用“上传额外的注释” 页 预测的BGC区域及其预测分数将与antiSMASH BGC一起显示 刊物 用于生物合成基因簇预测的深度学习基因组挖掘策略Geoffrey D Hannigan,David Prihoda等人,《核酸研究》,gkz654, //doi.org/10.1093/nar/gkz654 使用
2025-10-29 18:34:24 557KB python deep-learning bidirectional-lstm
1