道路交通基础设施韧性提升:理论与实践 道路交通基础设施是社会经济发展的重要支柱,对于人民福祉和国家经济社会发展具有深远影响。在面对极端天气和自然灾害时,交通基础设施的韧性显得尤为重要。韧性交通基础设施不仅关乎资产自身的抗灾能力,还涉及到整个交通网络的可靠性和用户在灾害中的安全与便捷。 李辉教授,同济大学交通运输工程学院的教授和博士生导师,专注于交通基础设施的可持续性和韧性研究。他的工作涵盖了从学术研究到实际应用的多个层面,包括博士后研究和指导研究生进行相关课题探索。李辉教授所在的同济团队——同济可持续交通研究中心(CST),致力于推动交通基础设施韧性提升的理论与实践。 在气候变化的背景下,交通基础设施面临着更大的灾害风险。例如,全球公路和铁路系统中有相当一部分暴露在洪水等灾害风险下,而交通基础设施的破坏会导致巨大的经济损失。国内外的重大灾害事件,如汶川地震、北京特大暴雨、波多黎各飓风等,都突显了交通基础设施在抵御自然灾害方面的脆弱性。交通中断所造成的损失往往远超过设施本身的破坏,因此,构建韧性交通基础设施显得尤为必要。 我国在韧性交通基础设施建设方面的需求日益增长。政府已将“交通网韧性”纳入国家综合立体交通网规划和交通强国建设纲要之中,强调要提升交通系统的应急保障能力和弹性。借鉴发达国家的经验,如美国、日本和英国,我国正在规划和打造能够有效应对极端情况的韧性交通基础设施。 韧性交通基础设施的建设涵盖了三个方面:资产韧性、网络韧性以及用户韧性。资产韧性旨在降低全生命周期成本,提高设施的耐久性和抗灾能力;网络韧性则关注于提供更可靠的交通运输服务,确保在灾害发生时仍能保持基本的运输功能;用户韧性则关注于减少灾害对人民生活和社会经济的总体影响。 在韧性城市建设中,交通系统的韧性是不可或缺的一环。自2008年汶川地震以来,我国对韧性城市的规划和建设逐渐重视,出台了一系列法规和政策来促进交通基础设施的韧性提升。未来,我国将持续致力于构建能够适应气候变化、有效抵御灾害、保障人民安全出行的交通强囯。
2025-11-27 17:08:41 8.2MB
1
本文将详细讲解“贵阳市道路、建筑、兴趣点矢量shp格式数据”这一主题,以及如何利用这些数据进行地理信息系统(GIS)分析。 我们要理解“shp”文件是什么。SHP(Shapefile)是Esri公司开发的一种常见地理空间数据格式,用于存储地理特征,如点、线和多边形。它包含了地理对象的位置和属性信息,常用于GIS应用。贵阳市的这个数据集包含了三种类型的空间信息:道路、建筑和兴趣点,这些都是城市规划、交通分析、商业选址等领域的重要数据。 道路数据通常包括道路的等级、类型、宽度、名称等属性,对于城市交通研究至关重要。通过分析道路网络,我们可以评估交通流量、设计优化路线、预测交通拥堵情况,甚至为智能交通系统提供基础数据。 建筑数据则包含了建筑物的位置、形状、高度、用途等信息,这对于城市规划、土地利用分析、环境影响评估等有极大的价值。例如,结合人口密度数据,可以研究居住区的分布;与商业活动数据结合,可分析商业区的发展潜力。 兴趣点数据通常指的是城市中的重要设施或吸引物,如学校、医院、公园、购物中心等。这些信息对于公众服务规划、人群流动研究、旅游规划等具有重要意义。通过对兴趣点的统计和分析,我们可以了解城市的活力和功能分区。 贵阳市的这些矢量数据采用wgs 84投影坐标系统,这是一种全球通用的地理坐标系,便于不同地区的数据交换和分析。使用GIS软件(如ArcGIS、QGIS等)可以轻松加载和处理这些数据,进行空间叠加、缓冲区分析、距离计算、聚类分析等操作。 相关性分析可以探索道路、建筑和兴趣点之间的关联,比如建筑密度与道路宽度的关系,或者兴趣点的分布与交通网络的紧密程度。空间分析则能揭示空间模式和趋势,如热力图、核密度分析等,帮助我们更好地理解城市空间结构。 这份“贵阳市道路、建筑、兴趣点矢量shp格式数据”是进行城市研究、规划决策的宝贵资源。通过深入挖掘和分析,我们可以获得对贵阳市城市发展的深入洞察,推动更科学的城市规划和管理。
2025-11-24 10:39:32 19.39MB
1
内容概要:本文探讨了现代车辆控制系统中难以实时测得整车质量和道路坡度的问题,基于车辆纵向动力学模型,详细介绍了无迹卡尔曼滤波(UKF)算法的设计与实现,并通过CarSim与MATLAB/Simulink联合仿真,比较了双遗忘因子递归最小二乘法(RLS-MFF)、扩展卡尔曼滤波(EKF)和UKF三种算法在这两个参数估计中的效果。实验结果显示,UKF算法在估计精度方面表现出色,尽管实时性稍逊,但仍能满足实际应用的需求。 适合人群:从事车辆控制、自动驾驶技术和先进驾驶辅助系统(ADAS)的研究人员和技术人员。 使用场景及目标:① 提供一种有效的整车质量和道路坡度同步估计算法,以提升车辆控制系统的性能;② 改善自适应巡航控制系统(ACC)、自动紧急制动系统(AEB)等ADAS的性能;③ 为剩余续航里程预测和换挡策略优化提供支持。 其他说明:文中还讨论了基于传感器和基于模型的不同估计方法,并详细解释了UKF算法的具体实现步骤以及与其他两种算法的对比分析。
1
内容概要:UN-R79法规旨在为道路车辆转向系统制定统一规定,涵盖传统机械转向系统和高级驾驶辅助转向系统(ADAS)。法规详细规定了转向系统的分类、性能要求、故障处理、认证流程及生产一致性要求。传统转向系统要求在转向操纵装置与转向轮之间保持可靠的机械连接,而新规允许采用无刚性机械连接的高级驾驶辅助转向系统,但仍需驾驶员保持对车辆的主导控制权。法规还特别强调了自动指令转向、校正转向、紧急转向等功能的具体要求,以及转向系统的故障处理机制和驾驶员干预机制。此外,法规明确了转向系统的测试方法和生产一致性核查流程,并对不同类别的车辆(如M、N、O类)提出了具体要求。 适用人群:汽车制造商、工程师、政策制定者、质量控制人员及相关行业从业者。 使用场景及目标:①确保车辆转向系统的可靠性与安全性,特别是在引入新技术的情况下;②为不同类型车辆(如乘用车、商用车)提供明确的转向系统设计和认证标准;③指导制造商进行转向系统的测试与生产一致性管理;④为政策制定者提供法规依据,以确保市场上的车辆符合安全标准。 其他说明:该法规不仅适用于传统转向系统,还涵盖了现代高级驾驶辅助系统,如车道保持、自动泊车
2025-11-12 14:02:31 909KB 自动驾驶技术 汽车工程
1
内容概要:本文档是德国标准DIN 70065的草案,规定了道路车辆中“线控转向(SbW)系统”的安全要求,适用于乘用车和轻型商用车。文档详细阐述了SbW系统的安全目标推导、系统可用性、首次故障下的可控性、故障后的运行行为(降级策略)等核心内容,明确了在发生故障时车辆应如何保持转向能力、可控性及安全状态。标准通过定义多种故障模式(如自行转向、转向能力失效、手力矩损失等)并结合驾驶操作测试(如直线行驶、蛇形绕桩、圆周行驶等)来评估系统的安全性,同时提出了降级状态(如受限行驶、蠕行、停车)和转换过程的具体要求,确保车辆在故障后能安全减速并最终停止。; 适合人群:从事汽车电子、智能驾驶、车辆安全系统研发的工程师、技术标准制定者、OEM主机厂及零部件供应商的技术人员。; 使用场景及目标:①为SbW系统的功能安全设计提供依据,确保符合ISO 26262等国际标准;②指导企业开展故障模式分析、可控性评估和降级策略验证;③支持整车企业在自动驾驶背景下构建安全可靠的转向系统架构。; 阅读建议:本标准为技术性规范文件,建议结合ISO 26262系列标准、车辆动力学知识及实际测试经验进行深入研读,重点关注故障模式矩阵、操作序列设计及验收标准,以便在产品开发中有效落地。
2025-11-12 11:18:54 2.72MB 汽车安全标准
1
【工程项目】MATLAB道路桥梁裂缝检测[不同类型,GUI界面,Bp算法]
2025-11-10 10:20:14 612KB
1
自动驾驶技术自提出以来,一直是全球科技领域研究的焦点。在智能化时代背景下,自动驾驶不仅要依赖于先进的硬件设备,更要依靠强大的软件算法来保障行驶安全。自动驾驶路况数据集的出现,正是为了服务于这一目标。此数据集包含了四种典型的道路条件——铺装道路、积雪道路、积水道路和沙土路,为自动驾驶技术的场景识别和决策提供了丰富的实际应用场景。 铺装道路是人类日常出行最普遍的道路类型,也是自动驾驶技术测试与应用的基准环境。在这一环境中,自动驾驶系统需要能够识别并准确地跟踪车道线,辨识各种交通标志和信号灯,以做出合乎逻辑的行驶决策。铺装道路数据集的使用,能帮助自动驾驶系统模拟真实世界的驾驶条件,提高在正常条件下的行驶稳定性和安全性。 积雪道路和积水道路均为极端天气条件下可能出现的场景,它们对自动驾驶系统的感知能力和决策能力提出了更高要求。积雪覆盖下的道路,不仅会降低能见度,还会因雪的附着而改变道路的表面特性,这对于视觉识别系统而言是极大的挑战。同时,积水也可能使道路变得湿滑,特别是在高速行驶状态下,车辆的抓地力会显著下降,增加了行驶的不确定性。通过这些路况数据集的训练,自动驾驶系统可以学习到如何在视线受阻和道路滑滑的条件下保持稳定,采取合适的行驶策略来保障行车安全。 沙土路作为非铺装道路的代表,其表面不平整,摩擦系数变化较大,且易于出现砂石飞溅的情况。自动驾驶系统面对沙土路时,需要具备较强的场景适应能力。系统不仅要准确识别道路的形状和状态,还要能在短时间内调整行驶策略,避免车辆失控。沙土路数据集的训练,使得自动驾驶技术能在恶劣路面上实现更好的控制和更高的通过性。 Yolov5目标检测模型是自动驾驶领域的一个重要工具,它的高效性和准确性使其在自动驾驶路况分类任务中显得尤为重要。该模型能够快速准确地定位路面特征,并根据这些特征进行分类,进而为自动驾驶决策系统提供实时路况信息。结合上述路况数据集,Yolov5模型能够帮助自动驾驶系统学习到在多种复杂条件下的行驶策略,从而提高识别和处理复杂路况的能力。 通过使用这些数据集,研究人员和工程师能够更加精确地训练和验证自动驾驶算法,使之在现实世界中遇到各种道路条件时,能够做出快速且正确的判断。这对于推进自动驾驶技术的商业化进程具有重要意义,因为它直接关系到自动驾驶车辆的安全性和可靠性。 未来,随着自动驾驶技术的不断进步,对于路况数据集的需求也将不断增长。研究人员需要不断收集和更新各类道路情况的数据,以适应不断变化的道路环境。同时,算法的优化和创新也离不开丰富而高质量的数据支撑。只有这样,才能确保自动驾驶技术在各种复杂环境中的性能不断提升,最终实现完全自动驾驶的目标。
2025-11-07 00:16:54 787.03MB 自动驾驶 数据集
1
该数据集是一个专门针对道路病害的图像识别与分析资源,包含了超过3000张以jpg格式存储的高分辨率图像。这些图像旨在用于训练和评估计算机视觉算法,特别是深度学习模型,以便自动检测和分类各种道路病害,如裂缝、坑洼、积水等。在智能交通系统、城市管理和维护等领域,这样的数据集具有重要价值。 我们要理解数据集的构成。"labels"文件夹可能包含了与每个图像相对应的txt文件,这些txt文件通常用于记录每张图片的标签信息。标签是图像分类的关键,它指明了图像中显示的道路病害类型。例如,每个txt文件可能包含一行文本,这一行对应于图片文件名,并可能附带一个或多个数字或类别名称,代表了图像中的病害类型。 对于图像处理任务,尤其是计算机视觉中的对象识别,这样的标注数据至关重要。它们允许我们训练深度学习模型,如卷积神经网络(CNN),来学习识别不同类型的道路病害。CNNs以其在图像识别任务上的出色性能而闻名,通过多层卷积和池化操作,可以从原始像素级数据中提取高级特征。 在实际应用中,这样的数据集可以被用来开发智能监控系统,实时监测道路状况,从而提高道路安全和效率。例如,当检测到严重的路面损坏时,系统可以自动触发警报,提醒相关部门进行维修。此外,它还可以用于城市规划,分析道路的磨损情况,预测未来可能的问题,以及优化维护策略。 为了处理这个数据集,我们需要使用一些特定的工具和编程语言,如Python,配合图像处理库PIL和深度学习框架TensorFlow或PyTorch。我们需要加载并解析txt标签文件,将它们与对应的图像文件匹配。接着,数据预处理步骤包括图像的归一化、缩放或增强,以适应模型的输入要求。我们可以构建和训练CNN模型,使用交叉验证和早停策略来防止过拟合,并通过调整超参数来优化模型性能。 在训练过程中,我们可能会使用损失函数(如交叉熵)和优化器(如Adam)来最小化预测错误。模型的性能通常通过准确率、召回率、F1分数等指标来评估。此外,为了防止模型对某些类别过于关注而忽视其他类别(类别不平衡问题),我们可能需要采取策略如加权损失函数或过采样/欠采样。 这个道路病害数据集为研究者和工程师提供了一个宝贵的资源,用于推动计算机视觉技术在交通领域的应用,提高道路管理的自动化水平,减少人力成本,保障公众的安全出行。
2025-11-06 16:55:31 764.68MB 数据集
1
在深度学习领域,U-Net是一种广泛应用于图像分割任务的卷积神经网络架构。它特别适合用于道路语义分割任务,这是因为U-Net具有出色的性能,能够在图像中准确识别和区分不同的道路元素,如车道线、交通标志、行人、车辆等。道路语义分割是自动驾驶和智能交通系统中的关键技术,它的目的是将道路场景中的每个像素分配给一个特定的类别,如背景、车辆、行人、道路标识等。 基于U-Net的集成模型,通过结合多个U-Net网络的预测结果,能够在实时条件下提供更为精确的道路分割。这种集成方法能够有效减少单个模型可能出现的错误,增强系统的鲁棒性和准确性。在集成模型中,通常会采用不同初始化参数的多个U-Net模型,或者通过引入不同的特征提取和融合策略来提升最终的分割效果。 《基于Unet的集成模型,用于实时道路语义分割》这一项目的毕业设计、源码和部署教程的集成,为开发者和研究人员提供了一个完整的解决方案。该项目不仅包含了模型的设计和实现,还包括了部署教程,使得用户可以轻松地在本地环境中运行和测试模型。这对于学术研究或实际应用都具有重要的意义,尤其是对于那些需要快速搭建和评估道路语义分割系统的开发者。 项目的界面美观、操作简单,说明了开发团队在用户体验方面也投入了相当的精力。一个直观的用户界面可以减少用户的学习成本,使得非专业的用户也能轻松上手。这种对易用性的关注,使得项目不仅在学术上具有价值,也在实际应用中具有潜在的市场竞争力。 项目的实用价值体现在其能够在实时条件下进行道路场景的快速分割。实时性是自动驾驶和智能交通系统的一个关键指标,因为在这些应用中,系统需要对道路状况做出快速响应。能够实时处理道路图像并准确识别出不同元素的系统,可以为车辆提供即时的环境感知能力,这对于提高自动驾驶系统的安全性和可靠性至关重要。 由于本项目是专为学术用途设计的,因此它非常适合相关专业的毕业设计或课程设计使用。在学习和实验过程中,学生和研究人员可以通过这个项目来深入理解U-Net及其在实时道路语义分割中的应用,这对于他们的研究和未来的职业生涯具有重要的帮助。 此外,该项目的开源特性使得其他开发者可以访问源码,这不仅有利于知识的共享和技术的传播,也促进了学术界和工业界的合作与交流。开源项目通常能够吸引社区中的其他成员参与改进和扩展,这有助于加速技术的发展和应用的创新。 《基于Unet的集成模型,用于实时道路语义分割》项目为相关专业的研究者和开发者提供了一个实用、功能全面且易于上手的工具,具有重要的学术和实际应用价值。该项目的开源特性,也显示了技术社区共同进步和创新的开放精神。
2025-10-30 16:34:55 146.7MB U-Net
1
供YOLOv8训练的道路交通灯和标志数据集。 21种对象分类,包括:公交车站, 禁止进入,禁停, 禁止左转, 禁止右转, 禁止掉头, 进入左侧车道, 绿灯, 左右车道, 禁止停车, 停车位, 人行过道, 斑马线, 铁道路口, 红灯, 停止, T字形交叉口, 交通灯, 掉头, 警告, 黄灯。 数据包括 1. 训练集:共1376张图片,53.3MB。 2. 验证集:共488张图片,21MB。 3. 测试集:共229张图片,8.4MB。 总共2093张图片,82.7MB。
2025-10-25 16:28:00 79.32MB 数据集
1