基于UKF的整车质量与道路坡度同步估计算法对比及其应用

上传者: songdm_2012 | 上传时间: 2025-11-13 19:54:46 | 文件大小: 476KB | 文件类型: PDF
内容概要:本文探讨了现代车辆控制系统中难以实时测得整车质量和道路坡度的问题,基于车辆纵向动力学模型,详细介绍了无迹卡尔曼滤波(UKF)算法的设计与实现,并通过CarSim与MATLAB/Simulink联合仿真,比较了双遗忘因子递归最小二乘法(RLS-MFF)、扩展卡尔曼滤波(EKF)和UKF三种算法在这两个参数估计中的效果。实验结果显示,UKF算法在估计精度方面表现出色,尽管实时性稍逊,但仍能满足实际应用的需求。 适合人群:从事车辆控制、自动驾驶技术和先进驾驶辅助系统(ADAS)的研究人员和技术人员。 使用场景及目标:① 提供一种有效的整车质量和道路坡度同步估计算法,以提升车辆控制系统的性能;② 改善自适应巡航控制系统(ACC)、自动紧急制动系统(AEB)等ADAS的性能;③ 为剩余续航里程预测和换挡策略优化提供支持。 其他说明:文中还讨论了基于传感器和基于模型的不同估计方法,并详细解释了UKF算法的具体实现步骤以及与其他两种算法的对比分析。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明