基于注意的MIL-TF2.0 这是我的项目!
2023-10-20 14:18:58 3.74MB Python
1
阿尔伯特-TF2.0 使用TF2.0的ALBERT模型微调 该存储库包含针对ALBERT的TensorFlow 2.0实现。 要求 python3 点安装-r requirements.txt ALBERT预训练 从零开始的ALBERT模型预训练和特定于域的微调。 说明 下载ALBERT TF 2.0砝码 Verison 1 版本2 将模型解压缩到存储库中。 以上重量不包含原始模型中的最后一层。 现在只能用于微调下游任务。 从TF-HUB到TF 2.0全权转换 下载胶水数据 使用以下cmd下载 python download_glue_data.py --data_dir glue_data --tasks all 微调 要准备用于最终模型训练的微调数据,请使用脚本。 tf_record格式的结果数据集和训练元数据应稍后传递给训练或评估脚本。 特定于任务的参数将在以下各节中介绍:
2023-03-28 13:58:27 183KB classifier glue tf2 mlm
1
# 多变量股价预测-LSTM 训练集时间范围:2001-01-25到2021-09-29,预测目标列为Open import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Dropout import pandas as pd from matplotlib import pyplot as plt from sklearn.preprocessing import MinMaxScaler import seaborn as sns from sklearn.model_selection import train_test_split
2023-02-28 01:06:36 128KB LSTM
1
原始github地址:https://github.com/hellochick/PWCNet-tf2
2022-11-29 11:28:46 94.5MB 光流
1
ISTA_Net_tf2
2022-11-03 15:55:29 478KB Python
1
面罩检测 该模型是轻量级的面罩检测模型。 基于ssd的骨干网是Mobilenet和RFB。 主要特点 Tensorflow 2.1 训练与推论 使用mAP的精度 使用tf.GradientTape急切模式训练 使用tf.keras网络功能 使用tf.data.TFRecordDataset数据集 ├── assets │ ├── 1_Handshaking_Handshaking_1_71.jpg │ ├── out_1_Handshaking_Handshaking_1_71.jpg │ ├── out_test_00002330.jpg │ └── test_00002330.jpg ├── checkpoints │ └── weights_epoch_100.h5 ├── components │ ├── config.py │ ├── __
2022-09-09 10:52:07 4.4MB detection face-detection ssd-mobilenet rfbnet
1
source-engine-2018-hl2_src:从〜2018开始泄漏的TF2源引擎源代码。 感谢泰勒·麦克维克(Tyler McVicker)! (lib,不包含toolsruntime)
2022-05-22 10:37:58 104.33MB 系统开源
1
快速SRGAN 该存储库的目标是实现实时超分辨率,以对低分辨率视频进行升采样。 目前,该设计遵循架构。 但是代替残差块,采用反向残差块以提高参数效率和快速操作。 这种想法在某种程度上受到。 培训设置如下图所示: 速度基准 通过平均800帧以上的运行时间获得以下运行时间/ fps。 在GTX 1080上测得。 输入图像尺寸 输出尺寸 时间(秒) 第一人称射击 128x128 512x512 0.019 52 256x256 1024x1024 0.034 30 384x384 1536x1536 0.068 15 我们看到有可能以30fps的速度将其上采样到720
2022-04-19 15:21:27 620KB neural-network tensorflow cnn tf2
1
文本多标签分类-BERT-Tf2.0 该存储库包含针对多标签文本分类的预训练BERT模型的Tensorflow2.0实现。 脚步 从下载数据 借助download_bert.sh下载预训练的模型权重 运行train_bert.py 训练损失和准确性 测试损失和准确性
1