face-mask-detection-tf2:在Tensorflow 2.1中使用带有简化Mobilenet和RFB或Pelee的ssd进行口罩检测。 在您自己的数据集上进行训练。 可以转换为kmodel并在k210的边缘设备上运行

上传者: 42172572 | 上传时间: 2022-09-09 10:52:07 | 文件大小: 4.4MB | 文件类型: ZIP
面罩检测 该模型是轻量级的面罩检测模型。 基于ssd的骨干网是Mobilenet和RFB。 主要特点 Tensorflow 2.1 训练与推论 使用mAP的精度 使用tf.GradientTape急切模式训练 使用tf.keras网络功能 使用tf.data.TFRecordDataset数据集 ├── assets │ ├── 1_Handshaking_Handshaking_1_71.jpg │ ├── out_1_Handshaking_Handshaking_1_71.jpg │ ├── out_test_00002330.jpg │ └── test_00002330.jpg ├── checkpoints │ └── weights_epoch_100.h5 ├── components │ ├── config.py │ ├── __

文件下载

资源详情

[{"title":"( 31 个子文件 4.4MB ) face-mask-detection-tf2:在Tensorflow 2.1中使用带有简化Mobilenet和RFB或Pelee的ssd进行口罩检测。 在您自己的数据集上进行训练。 可以转换为kmodel并在k210的边缘设备上运行","children":[{"title":"face-mask-detection-tf2-master","children":[{"title":"mAP","children":[{"title":"detect.py <span style='color:#111;'> 6.15KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 90B </span>","children":null,"spread":false},{"title":"compute_mAP.py <span style='color:#111;'> 33.21KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 186B </span>","children":null,"spread":false}],"spread":true},{"title":"inference.py <span style='color:#111;'> 5.28KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 6.16KB </span>","children":null,"spread":false},{"title":"assets","children":[{"title":"test_00002330.jpg <span style='color:#111;'> 184.70KB </span>","children":null,"spread":false},{"title":"out_1_Handshaking_Handshaking_1_71.jpg <span style='color:#111;'> 178.19KB </span>","children":null,"spread":false},{"title":"out_test_00002330.jpg <span style='color:#111;'> 189.15KB </span>","children":null,"spread":false},{"title":"1_Handshaking_Handshaking_1_71.jpg <span style='color:#111;'> 90.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"dataset","children":[{"title":"voc_to_tfrecord.py <span style='color:#111;'> 5.88KB </span>","children":null,"spread":false},{"title":"tf_dataset_preprocess.py <span style='color:#111;'> 10.65KB </span>","children":null,"spread":false},{"title":"check_dataset.py <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"Maskdata","children":[{"title":"ImageSets","children":[{"title":"Main","children":[{"title":"val.txt <span style='color:#111;'> 41.30KB </span>","children":null,"spread":false},{"title":"trainval.txt <span style='color:#111;'> 186.96KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 145.66KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"checkpoints","children":[{"title":"weights_epoch_100.h5 <span style='color:#111;'> 4.18MB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 181B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 278B </span>","children":null,"spread":false},{"title":"components","children":[{"title":"prior_box.py <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"lr_scheduler.py <span style='color:#111;'> 3.73KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 10.08KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 90B </span>","children":null,"spread":false},{"title":"kmeans.py <span style='color:#111;'> 5.93KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false},{"title":"network","children":[{"title":"losses.py <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 90B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 10.60KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明