ALBERT-TF2.0:使用TF2.0的ALBERT模型预训练和微调

上传者: 42128141 | 上传时间: 2023-03-28 13:58:27 | 文件大小: 183KB | 文件类型: ZIP
阿尔伯特-TF2.0 使用TF2.0的ALBERT模型微调 该存储库包含针对ALBERT的TensorFlow 2.0实现。 要求 python3 点安装-r requirements.txt ALBERT预训练 从零开始的ALBERT模型预训练和特定于域的微调。 说明 下载ALBERT TF 2.0砝码 Verison 1 版本2 将模型解压缩到存储库中。 以上重量不包含原始模型中的最后一层。 现在只能用于微调下游任务。 从TF-HUB到TF 2.0全权转换 下载胶水数据 使用以下cmd下载 python download_glue_data.py --data_dir glue_data --tasks all 微调 要准备用于最终模型训练的微调数据,请使用脚本。 tf_record格式的结果数据集和训练元数据应稍后传递给训练或评估脚本。 特定于任务的参数将在以下各节中介绍:

文件下载

资源详情

[{"title":"( 30 个子文件 183KB ) ALBERT-TF2.0:使用TF2.0的ALBERT模型预训练和微调","children":[{"title":"ALBERT-TF2.0-master","children":[{"title":"input_pipeline.py <span style='color:#111;'> 9.07KB </span>","children":null,"spread":false},{"title":"albert_model.py <span style='color:#111;'> 11.13KB </span>","children":null,"spread":false},{"title":"albert.py <span style='color:#111;'> 37.11KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"evaluate-v2.0.py <span style='color:#111;'> 10.30KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"tf_utils.py <span style='color:#111;'> 5.72KB </span>","children":null,"spread":false},{"title":"evaluate-v1.1.py <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"run_squad.py <span style='color:#111;'> 33.47KB </span>","children":null,"spread":false},{"title":"converter.md <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false},{"title":"tokenization.py <span style='color:#111;'> 15.22KB </span>","children":null,"spread":false},{"title":"run_classifer.py <span style='color:#111;'> 16.16KB </span>","children":null,"spread":false},{"title":"create_finetuning_data.py <span style='color:#111;'> 5.28KB </span>","children":null,"spread":false},{"title":"img","children":[{"title":"squad_2.png <span style='color:#111;'> 99.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"run_pretraining.py <span style='color:#111;'> 9.69KB </span>","children":null,"spread":false},{"title":"create_pretraining_data.py <span style='color:#111;'> 23.03KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 71B </span>","children":null,"spread":false},{"title":"optimization.py <span style='color:#111;'> 17.47KB </span>","children":null,"spread":false},{"title":"pretraining.md <span style='color:#111;'> 7.20KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 7.73KB </span>","children":null,"spread":false},{"title":"squad_lib.py <span style='color:#111;'> 39.33KB </span>","children":null,"spread":false},{"title":"model_configs","children":[{"title":"xxlarge","children":[{"title":"config.json <span style='color:#111;'> 543B </span>","children":null,"spread":false}],"spread":false},{"title":"large","children":[{"title":"config.json <span style='color:#111;'> 520B </span>","children":null,"spread":false}],"spread":false},{"title":"base","children":[{"title":"config.json <span style='color:#111;'> 519B </span>","children":null,"spread":false}],"spread":false},{"title":"xlarge","children":[{"title":"config.json <span style='color:#111;'> 520B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"classifier_data_lib.py <span style='color:#111;'> 29.11KB </span>","children":null,"spread":false},{"title":"converter.py <span style='color:#111;'> 8.49KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"download_glue_data.py <span style='color:#111;'> 8.03KB </span>","children":null,"spread":false},{"title":"model_training_utils.py <span style='color:#111;'> 14.55KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明