Computer Vision: Principles, Algorithms, Applications, Learning By 作者: E. R. Davies ISBN-10 书号: 012809284X ISBN-13 书号: 9780128092842 Edition 版本: 5 出版日期: 2017-11-29 pages 页数: (900 ) Computer Vision: Principles, Algorithms, Applications, Learning (previously entitled Computer and Machine Vision) clearly and systematically presents the basic methodology of computer vision, covering the essential elements of the theory while emphasizing algorithmic and practical design constraints. This fully revised fifth edition has brought in more of the concepts and applications of computer vision, making it a very comprehensive and up-to-date text suitable for undergraduate and graduate students, researchers and R&D engineers working in this vibrant subject. Three new chapters on Machine Learning emphasise the way the subject has been developing; Two chapters cover Basic Classification Concepts and Probabilistic Models; and the The third covers the principles of Deep Learning Networks and shows their impact on computer vision, reflected in a new chapter Face Detection and Recognition. A new chapter on Object Segmentation and Shape Models reflects the methodology of machine learning and gives practical demonstrations of its application. In-depth discussions have been included on geometric transformations, the EM algorithm, boosting, semantic segmentation, face frontalisation, RNNs and other key topics. Examples and applications―including the location of biscuits, foreign bodies, faces, eyes, road lanes, surveillance, vehicles and pedestrians―give the ‘ins and outs’ of developing real-world vision systems, showing the realities of practical implementation. Necessary mathematics and essential theory are made approachable by careful explanations and well-illustrated examples. The ‘recent developments’ sections included in each chapter aim to bring students and practitioners up to date with this fast-moving subject. Tailored programming examples―code, methods, illustrations, tasks, hints and solutions (mainly involving MATLAB and C++)
2026-01-05 12:43:15 38.05MB Machine Lear
1
包含八个代码文件,包括:特征抽取,特征选择,标准化,归一化,PCA,还有一些sklearn流行数据集的使用方法,以及kaggle大赛上的一个项目的数据分析阶段
2024-05-26 12:10:34 5KB mechine lear
1
A step-by-step gentle journey through the mathematics of neural networks, and making your own using the Python computer language. Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.
2024-01-13 11:04:46 4.97MB neural netwo machine lear
1
Feature Engineering for Machine Learning and Data Analytics (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series) ISBN-10 书号: 1138744387 ISBN-13 书号: 9781138744387 Edition 版本: 1 出版日期: 2018-04-04 pages 页数: 418 Chapter 1 Preliminaries and Overview Guozhu Dong and Huan Liu Part I Feature Engineering for Various Data Types Chapter 2 Feature Engineering for Text Data Chase Geigle, Qiaozhu Mei, and ChengXiang Zhai Chapter 3 Feature Extraction and Learning for Visual Data Parag S. Chandakkar, Ragav Venkatesan, and Baoxin Li Chapter 4 Feature-Based Time-Series Analysis Ben D. Fulcher Chapter 5 Feature Engineering for Data Streams Yao Ma, Jiliang Tang, and Charu Aggarwal Chapter 6 Feature Generation and Feature Engineering for Sequences Guozhu Dong, Lei Duan, Jyrki Nummenmaa, and Peng Zhang Chapter 7 Feature Generation for Graphs and NetworksYuan Yao, Hanghang Tong, Feng Xu, and Jian Lu Part lI General Feature Engineering Techniques Chapter 8 Feature Selection and Evaluation Yun Li and Tao Li Chapter 9 Automating Feature Engineering in Supervised Learning Udayan Khurana Chapter 10 Pattern-Based Feature Generation Yunzhe Jia, James Bailey, Ramamohanarao Kotagiri, and Christopher Leckie Chapter 11 Deep Learning for Feature Representation Suhang Wang and Huan Liu Part ll Feature Engineering in Special Applications Chapter 12 Feature Engineering for Social Bot Detection Onur Varol, Clayton A. Davis, Filippo Menczer, and Alessandro Flammini Chapter 13 Feature Generation and Engineering for Software Analytics Xin Xia and David Lo Chapter 14 Feature Engineering for Twitter-Based Applications Sanjaya Wijeratne, Amit Sheth, Shreyansh Bhatt, Lakshika Balasuriya, Hussein S. Al-Olimat, Manas Gaur, Amir Hossein Yazdavar, Krishnaprasad Thirunarayan Index
2022-11-18 14:53:08 22.18MB Machine lear
1
multidimensional particle swarm optimization for machine learning and pattern recognition
2022-10-25 23:02:29 18.48MB machine lear
1
Understanding Machine Learning - From Theory to Algorithms这本书的中文扫描版
2022-10-11 13:18:21 47.86MB machine lear theory to
1
Apress出版, 2019年的书。全英文。我还没看,无法发表意见。请自己到Amazon看介绍.
2022-10-11 11:38:19 13.9MB Matlab Machine Lear AI
1
Computers have gained a cardinal place in modern societies, thanks to higher efficiencies and miniaturisation. However, their dramatic progress will soon have to stop as the limits of miniaturisation are being reached. Furthermore, few people realise that those computers are, in fact, not as powerful as they seem to be. And while the world champion at Go lost to a computer, an average human still beats a computer at relatively easy tasks such as recognising an object in a picture. Artificial intelligence is the key to more versatile computing machines capable of solving such challenging tasks.
2022-08-14 16:21:33 5.49MB FPGA Machine Lear
1
《机器视觉算法与应用(双语版)》是一本关于机器视觉算法与应用的中英文对照版教材。而且附带有halcon代码,讲解十分详细!
2022-05-30 19:17:40 219.33MB Machine Lear Halcon
1
很好的的深度学习材料,值得与大家分享,讲解非常详细~
2022-04-29 16:02:03 35.84MB MACHINE LEAR
1