动漫推荐系统| Python,惊喜,Jupyter
该项目的目标是开发基于协作的动漫推荐器系统,该系统能够基于数据库信息(包括总用户历史记录和评级ID用户反馈)生成个性化的独特和相关动漫推荐列表,数据来源来自Kaggle。 com 。 有两个关联的数据集,评级数据集和动漫数据集。 评分数据集包含来自7,516个用户的7,813,737个评分(评分等级:1-10),涉及12294种动漫,密度为0.92%; 动漫数据集包含有关每个动漫的信息,共有7列(anime_id,名称,类型,类型,剧集,评分和成员)。 我将python和SUPRISE软件包一起使用,并利用定制的内置数据清理和模型评估程序,研究了各种协作过滤(CF)算法,包括基于项目的KNNWithMeans,SVD,共聚和SVDpp。
SVD在基于nDCG(排名准确性指标)为用户推荐相关动漫的排名列表方面表现最好,而又不牺牲太多速
1